首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water samples from 52 whirlpools (jacuzzi), water temperature 35–40°C, and from 50 swimming pools, water temperature 8–30°C, were investigated for the presence of Legionella pneumophila. This was isolated from 11 of 28 whirlpools with free available chlorine less than 0.3 mg/1. No legionellas were detected in 23 whirlpools with free available chlorine over 0.3 mg/l. Legionella pneumophila was found in two swimming pools. The results indicate that 0.3 mg/l of free available chlorine is sufficient to eliminate legionellas from whirlpools.  相似文献   

2.
The association between Legionella pneumophila and the free-living amoeba Acanthamoeba polyphaga was studied. Intracellular growth of L. pneumophila within amoebic trophozoite was confirmed by kinetic growth experiments, light and electron microscopy. Cysts produced from infected trophozoites were found to protect the legionellas from at least 50 mg/l free chlorine. The ability of L. pneumophila to survive within the cysts of A. polyphaga is suggested as a possible mechanism by which the organism evades disinfection and spreads to colonize new environments.  相似文献   

3.
The association between Legionella pneumophila and the free-living amoeba Acanthamoeba polyphaga was studied. Intracellular growth of L. pneumophila within amoebic trophozoite was confirmed by kinetic growth experiments, light and electron microscopy. Cysts produced from infected trophozoites were found to protect the legionellas from at least 50 mg/l free chlorine. The ability of L. pneumophila to survive within the cysts of A. polyphaga is suggested as a possible mechanism by which the organism evades disinfection and spreads to colonize new environments.  相似文献   

4.
The disinfectant effects on Legionella and nontuberculous mycobacteria of hot water, ultraviolet light, silver ions and chlorine, were evaluated. The bacterial strains Legionella pneumophila ATCC33152 and Mycobacterium avium ATCC25291 and strains of L. pneumophila and M. avium which had been isolated from a 24 h bath, were examined for their resistance to treatments. All strains were killed within 3 min on exposure to hot water at 70 degrees C and exposure to ultraviolet light at 90 mW.s/cm2. The strains of L. pneumophila tested were killed within 6 h on exposure to a solution of silver ions at 50 micrograms/l. The number of viable cells of strains of M. avium fell from 10(5) CFU/ml to 10(3) CFU/ml after exposure to an aqueous solution of silver ions at 100 micrograms/l for 24 h. Chlorine effectively killed strains of Legionella which were exposed to an aqueous solution of chlorine at 2 mg/l within 3 min, but strains of Mycobacterium survived exposure to chlorine at 4 mg/l for more than 60 min.  相似文献   

5.
Water disinfection systems utilizing electrolytically generated copper and silver ions (200 and 20, 400 and 40, or 800 and 80 micrograms/liter) and low levels of free chlorine (0.1 to 0.4 mg/liter) were evaluated at room (21 to 23 degrees C) and elevated (39 to 40 degrees C) temperatures in filtered well water (pH 7.3) for their efficacy in inactivating Legionella pneumophila (ATCC 33155). At room temperature, a contact time of at least 24 h was necessary for copper and silver (400 and 40 micrograms/liter) to achieve a 3-log10 reduction in bacterial numbers. As the copper and silver concentration increased to 800 and 80 micrograms/liter, the inactivation rate significantly (P less than or equal to 0.05) increased from K = 2.87 x 10(-3) to K = 7.50 x 10(-3) (log10 reduction per minute). In water systems with and without copper and silver (400 and 40 micrograms/liter), the inactivation rates significantly increased as the free chlorine concentration increased from 0.1 mg/liter (K = 0.397 log10 reduction per min) to 0.4 mg/liter (K = 1.047 log10 reduction per min). Compared to room temperature, no significant differences were observed when 0.2 mg of free chlorine per liter with and without 400 and 40 micrograms of copper and silver per liter was tested at 39 to 40 degrees C. All disinfection systems, regardless of temperature or free chlorine concentration, showed increase inactivation rates when 400 and 40 micrograms of copper and silver per liter was added; however, this trend was significant only at 0.4 mg of free chlorine per liter.  相似文献   

6.
Three different species of Legionella were recovered from samples of water taken from chlorinated public water supplies where no coliform bacteria were simultaneously detected. Five of 856 samples yielded Legionella isolates. Three isolates were identified as Legionella pneumophila serogroup 1, the fourth was identified as Legionella dumoffii, and the fifth was identified as Legionella jordanis. Studies to determine the survival of L. pneumophila Flint 1 serogroup 1 in tap water at various temperatures and in tap water with added sodium hypochlorite were done. These organisms were found to survive for 299 days in tap water at 24 and 5 degrees C but not at 35 degrees C. A concentration of at least 0.2 mg of residual chlorine per ml was required to eliminate at least 90% of L. pneumophila and Escherichia coli inocula in 2 h.  相似文献   

7.
Isolation of Legionella species from drinking water.   总被引:4,自引:2,他引:2       下载免费PDF全文
Three different species of Legionella were recovered from samples of water taken from chlorinated public water supplies where no coliform bacteria were simultaneously detected. Five of 856 samples yielded Legionella isolates. Three isolates were identified as Legionella pneumophila serogroup 1, the fourth was identified as Legionella dumoffii, and the fifth was identified as Legionella jordanis. Studies to determine the survival of L. pneumophila Flint 1 serogroup 1 in tap water at various temperatures and in tap water with added sodium hypochlorite were done. These organisms were found to survive for 299 days in tap water at 24 and 5 degrees C but not at 35 degrees C. A concentration of at least 0.2 mg of residual chlorine per ml was required to eliminate at least 90% of L. pneumophila and Escherichia coli inocula in 2 h.  相似文献   

8.
A note on the temperature tolerance of Legionella   总被引:3,自引:0,他引:3  
A strain of Legionella pneumophila serogroup 1 isolated from the environment had a decimal reduction time in water at 50 degrees C (D50) of 111 min, a D54 of 27 min and a D58 of 6 min. There was little loss of viability at 46 degrees C. Other environmental organisms, a Pseudomonas sp., a Micrococcus sp. and a coliform survived less well at these temperatures. A species of Sarcina had a survival time greater than the L. pneumophila at all the temperatures tested. Other strains of legionellas were tested at 50 degrees C and decimal reduction times calculated. These ranged from 80 min for another strain of L. pneumophia serogroup 1 to 216 min for L. bozemannii . Legionella micdadei did not survive well at 50 degrees C.  相似文献   

9.
The efficacy of electrolytically generated copper and silver ions (400 and 40 micrograms/L, respectively) was evaluated separately and in combination with free chlorine (0.2 and 0.3 mg/L) for the inactivation of coliphage MS-2 and poliovirus type 1 in water at pH 7.3. The inactivation rate was calculated as log10 reduction/min: k = -(log10 Ct/C0)/t. The inactivation of both viruses was at least 100 times slower in water containing 400 and 40 micrograms/L copper and silver, respectively (k = 0.023 and 0.0006 for MS-2 and poliovirus, respectively), compared with water containing 0.3 mg/L free chlorine (k = 4.88 and 0.036). Significant increases in the inactivation rates of both viruses were observed in test systems containing 400 and 40 micrograms/L copper and silver, respectively, with 0.3 mg/L free chlorine when compared with the water systems containing either metals or free chlorine alone. Poliovirus was approximately 10 times more resistant to the disinfectants than coliphage MS-2. This observation suggests either a synergistic or an additive effect between the metals and chlorine for inactivation of enteric viruses. Use of copper and silver ions in water systems currently used in swimming pools and spas may provide an alternative to high levels of chlorination.  相似文献   

10.
A survey of 100 swimming pools has been conducted to assess the effectiveness of disinfection practices against various microorganisms and to check compliance with recommended chlorine levels and pH. Microbiological quality was assessed from densities of total coliforms, Escherichia coli, and Pseudomonas aeruginosa, total colony counts, and the presence or absence of amoebae, including the pathogen Naegleria fowleri. Although a free chlorine residual of 1.0 mg/liter and a pH range of 7.0 to 7.6 are recommended by local health authorities, 41 pools had a lower free chlorine residual and 37 had a pH outside this range. Multiple logistic regression analysis was used to test the association of field measurements with the microbiological data. The analysis demonstrated a strong positive association of free chlorine with bacteriological quality and the absence of Naegleria spp. No other field measurement was predictive in this regard, although the absence of all amoebae was associated with a relatively low water temperature and pH. Using a mathematical model derived from this analysis, it was estimated that 99% of pools would have acceptable bacteriological quality and 94% would be free of Naegleria spp. at a free chlorine residual of 1.0 mg/liter. However, at the mean water temperature (23 degrees C) and pH (7.5) seen in this study, other amoebae would still be detectable in 500-ml samples taken from 40% of pools at this chlorine level.  相似文献   

11.
A survey of 100 swimming pools has been conducted to assess the effectiveness of disinfection practices against various microorganisms and to check compliance with recommended chlorine levels and pH. Microbiological quality was assessed from densities of total coliforms, Escherichia coli, and Pseudomonas aeruginosa, total colony counts, and the presence or absence of amoebae, including the pathogen Naegleria fowleri. Although a free chlorine residual of 1.0 mg/liter and a pH range of 7.0 to 7.6 are recommended by local health authorities, 41 pools had a lower free chlorine residual and 37 had a pH outside this range. Multiple logistic regression analysis was used to test the association of field measurements with the microbiological data. The analysis demonstrated a strong positive association of free chlorine with bacteriological quality and the absence of Naegleria spp. No other field measurement was predictive in this regard, although the absence of all amoebae was associated with a relatively low water temperature and pH. Using a mathematical model derived from this analysis, it was estimated that 99% of pools would have acceptable bacteriological quality and 94% would be free of Naegleria spp. at a free chlorine residual of 1.0 mg/liter. However, at the mean water temperature (23 degrees C) and pH (7.5) seen in this study, other amoebae would still be detectable in 500-ml samples taken from 40% of pools at this chlorine level.  相似文献   

12.
P Muraca  J E Stout    V L Yu 《Applied microbiology》1987,53(2):447-453
Nosocomial Legionnaires disease can be acquired by exposure to the organism from the hospital water distribution system. As a result, many hospitals have instituted eradication procedures, including hypercholorination and thermal eradication. We compared the efficacy of ozonation, UV light, hyperchlorination, and heat eradication using a model plumbing system constructed of copper piping, brass spigots, Plexiglas reservoir, electric hot water tank, and a pump. Legionella pneumophila was added to the system at 10(7) CFU/ml. Each method was tested under three conditions; (i) nonturbid water at 25 degrees C, (ii) turbid water at 25 degrees C, and (iii) nonturbid water at 43 degrees C. UV light and heat killed L. pneumophila most rapidly and required minimal maintenance. Both UV light and heat (60 degrees C) produced a 5 log kill in less than 1 h. In contrast, both chlorine and ozone required 5 h of exposure to produce a 5 log decrease. Neither turbidity nor the higher temperature of 43 degrees C impaired the efficacy of any of the disinfectant methods. Surprisingly, higher temperature enhanced the disinfecting efficacy of chlorine. However, higher temperature accelerated the decomposition of the chlorine residual such that an additional 120% volume of chlorine was required. All four methods proved efficacious in eradicating L. pneumophila from a model plumbing system.  相似文献   

13.
AIMS: Monitoring of microbial changes during and after application of various disinfection treatments in a model domestic water system. METHODS AND RESULTS: A pilot-scale domestic water system consisting of seven galvanized steel re-circulation loops and copper dead legs was constructed. Culture techniques, confocal laser scanning microscopy after fluorescent in situ hybridization and viability staining with the BacLight LIVE/DEAD kit were used for planktonic and biofilm flora monitoring. Before starting the treatments, the system was highly contaminated with Legionella pneumophila and biofilm populations mainly consisted of beta-proteobacteria. In the water and the biofilm of the loops, continuous application of chlorine dioxide (0.5 mg l(-1)), or chlorine (2.5 mg l(-1)) were very effective in reducing the microbial flora, including L. pneumophila. Heterotrophic bacteria, although strongly reduced, were still detectable after ozone application (0.5 mg l(-1)), whereas with monochloramine (0.5 mg l(-1)) and copper-silver ionization (0.8/0.02 mg l(-1)), the contamination remained significantly higher. Monochloramine and copper-silver did not remove the biofilm. During copper-silver application, Legionella re-growth was observed. Only chlorine dioxide led to detectable effects in the dead leg. Amoebae could not be eliminated, and after interrupting the treatments, L. pneumophila quickly recovered their initial levels, in all cases. CONCLUSIONS: Chlorine dioxide, applied as a continuous treatment, was identified in this study as the most efficient for controlling L. pneumophila in a domestic water system. Chlorine dioxide showed a longer residual activity, leading to improved performance in the dead leg. Amoebae resisted to all the treatments applied and probably acted as reservoirs for L. pneumophila, allowing a quick re-colonization of the system once the treatments were interrupted. SIGNIFICANCE AND IMPACT OF THE STUDY: Control of microbial contamination requires maintenance of a constant disinfectant residual throughout the water system. Treatment strategies targeting free-living amoebae should lead to improved control of L. pneumophila. Such treatment strategies still have to be investigated.  相似文献   

14.
Nosocomial Legionnaires disease can be acquired by exposure to the organism from the hospital water distribution system. As a result, many hospitals have instituted eradication procedures, including hypercholorination and thermal eradication. We compared the efficacy of ozonation, UV light, hyperchlorination, and heat eradication using a model plumbing system constructed of copper piping, brass spigots, Plexiglas reservoir, electric hot water tank, and a pump. Legionella pneumophila was added to the system at 10(7) CFU/ml. Each method was tested under three conditions; (i) nonturbid water at 25 degrees C, (ii) turbid water at 25 degrees C, and (iii) nonturbid water at 43 degrees C. UV light and heat killed L. pneumophila most rapidly and required minimal maintenance. Both UV light and heat (60 degrees C) produced a 5 log kill in less than 1 h. In contrast, both chlorine and ozone required 5 h of exposure to produce a 5 log decrease. Neither turbidity nor the higher temperature of 43 degrees C impaired the efficacy of any of the disinfectant methods. Surprisingly, higher temperature enhanced the disinfecting efficacy of chlorine. However, higher temperature accelerated the decomposition of the chlorine residual such that an additional 120% volume of chlorine was required. All four methods proved efficacious in eradicating L. pneumophila from a model plumbing system.  相似文献   

15.
Abstract Using direct fluorescent antibody (DFA) staining technique, Legionella pneumophila SG 1, 3 and 5 was evident in water samples collected from different localities of central Italian regions, Marche and Abruzzi; L. pneumophila SG 1 and 3 was also detected in aquatic stages of arthropods living in the Legionella -positive waters. Diptera, Coleoptera, Collembola and Isopoda were found to be positive for legionellas by DFA. Diptera, the most common in the waters surveyed, were represented by Chironomidae and Culicidae families, the latter being larval and pupal stages of genus Anopheles and Culex . Mosquito adults, emerged in laboratory from pupae collected in one sample of positive water, were also positive. The findings that aquatic arthropods harbor legionellas and whether they could be involved in the maintenance and dissemination of legionellas in nature are discussed.  相似文献   

16.
Susceptibility of Legionella pneumophila to chlorine in tap water   总被引:7,自引:0,他引:7  
A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.  相似文献   

17.
Susceptibility of Legionella pneumophila to chlorine in tap water.   总被引:10,自引:9,他引:1       下载免费PDF全文
A study was conducted to compare the susceptibility of legionellae and coliforms to disinfection by chlorine. The chlorine residuals used were similar to concentrations that might be found in the distribution systems of large public potable water supplies. The effects of various chlorine concentrations, temperatures, and pH levels were considered. A number of different Legionella strains, both environmental and clinical, were tested. The results indicate that legionellae are much more resistant to chlorine than are coliform bacteria. At 21 degrees C, pH 7.6, and 0.1 mg of free chlorine residual per liter, a 99% kill of L. pneumophila was achieved within 40 min, compared with less than 1 min for Escherichia coli. The observed resistance is enhanced as conditions for disinfection become less optimal. The required contact time for the removal of L. pneumophilia was twice as long at 4 degrees C than it was at 21 degrees C. These data suggest that legionellae can survive low levels of chlorine for relatively long periods of time.  相似文献   

18.
A note on the temperature tolerance of Legionella   总被引:2,自引:2,他引:0  
D ennis , P.J., G reen , D. & J ones , B.P.C. 1984. A note on the temperature tolerance of Legionella. Journal of Applied Bacteriology 56 , 349–350.
A strain of Legionella pneumophila serogroup 1 isolated from the environment had a decimal reduction time in water at 50C (D50) of 111 min, a D54 of 27 min and a D58 of 6 min. There was little loss of viability at 46C. Other environmental organisms, a Pseudomonas sp., a Micrococcus sp. and a coliform survived less well at these temperatures. A species of Sarcina had a survival time greater than the L. pneumophila at all the temperatures tested. Other strains of legionellas were tested at 50C and decimal reduction times calculated. These ranged from 80 min for another strain of L. pneumophia serogroup 1 to 216 min for L. bozemannii. Legionella micdadei did not survive well at 50C.  相似文献   

19.
A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of > or =10(3) CFU liter(-1), and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L. pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed.  相似文献   

20.
Previous studies have shown that bacteria maintained in a low-nutrient "natural" environment such as swimming pool water are much more resistant to disinfection by various chemical agents than strains maintained on rich media. In the present study a comparison was made of the chlorine (Cl2) susceptibility of hot-water tank isolates of Legionella pneumophila maintained in tap water and strains passaged on either nonselective buffered charcoal-yeast extract or selective differential glycine-vancomycin-polymyxin agar medium. Our earlier work has shown that environmental and clinical isolates of L. pneumophila maintained on agar medium are much more resistant to Cl2 than coliforms are. Under the present experimental conditions (21 degrees C, pH 7.6 to 8.0, and 0.25 mg of free residual Cl2 per liter, we found the tap water-maintained L. pneumophila strains to be even more resistant than the agar-passaged isolates. Under these conditions, 99% kill of tap water-maintained strains of L. pneumophila was usually achieved within 60 to 90 min compared with 10 min for agar-passaged strains. Samples from plumbing fixtures in a hospital yielded legionellae which were "super"-chlorine resistant when assayed under natural conditions. After one agar passage their resistance dropped to levels of comparable strains which had not been previously exposed to additional chlorination. These studies more closely approximate natural conditions than our previous work and show that tap water-maintained L. pneumophila is even more resistant to Cl2 than its already resistant agar medium-passaged counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号