首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms that influence the polarization of CD4 T cells specific for allogeneic MHC class II molecules in vivo are still poorly understood. We have examined the pathway of alloreactive CD4 T cell differentiation in a situation in which only CD4 T cells could be activated in vivo. In this report we show that priming of adult mice with allogeneic APC, in the absence of MHC class I-T cell interactions, induces a strong expansion of type 2 cytokine-producing allohelper T cells. These alloantigen-specific CD4 T cells directly recognize native allogeneic MHC class II molecules on APC and secrete, in addition to the prototypic Th2 cytokines IL-4, IL-5, and IL-10, large amounts of TGF-beta. The default Th2-phenotype acquisition is not genetically controlled and occurred both in BALB/c and C57BL/6 mice. CD8 T cells are the principal cell type that controls CD4 T cell differentiation in vivo. Furthermore, we demonstrate that strong Th2 priming can be induced not only with allogeneic splenocytes but also with a low number of bone marrow-derived dendritic cells. Finally, using a passive transfer system, we provide direct evidence that CD8 T cell expansion in situ promotes alloreactive Th1 cell development principally by preventing their default development to the Th2 pathway in a mechanism that is largely IFN-gamma independent. Therefore, this work demonstrates that type 2 cytokine production represents a dominant pathway of alloreactive CD4 T cell differentiation in adult mice, a phenomenon that was initially thought to occur only during the neonatal period.  相似文献   

2.
Protection against intracellular bacteria by T cells is regulated by Ag-presenting molecules, which comprise classical MHC class I molecules, MHC class II molecules, and nonclassical MHC class Ib molecules. The role of CD1 molecules, which are structurally similar to classical MHC class I gene products, but less polymorphic, is not understood so far. We show that CD1 surface expression increased on APC in Listeria-infected mice. The in vivo treatment with anti-CD1 mAb reduced TGF-beta 2 levels and concomitantly increased secretion of the proinflammatory cytokine TNF, the Th1 cell promoting cytokine IL-12, and the Th1 cell cytokine IFN-gamma at the onset of listerial infection. These findings point to a regulatory role of CD1-reactive cells in the immune response against listeriosis.  相似文献   

3.
MHC class II (MHC II) proteins are competent signaling molecules on APC. However, little is known about the mechanisms that control generation of their activating signals. Previous reports highlighted a number of factors that could affect the nature and outcome of MHC II signals, including the inability of MHC II ligation on resting vs activated murine B cells to induce mobilization of Ca2+. In the present study, we report that ligation of MHC II on resting murine B cells reproducibly induces mobilization of intracellular Ca2+ using both mAbs and cognate T cells as ligands. Mobilization of Ca2+ was independent of MHC II haplotype, isotype, or mouse genetic background. MHC II-mediated mobilization of Ca2+ is completely inhibited by inhibitors of src-like kinases and syk, and MHC II ligation increases overall tyrosine phosphorylation level. Moreover, MHC II ligation results in specific up-regulation of CD86. However, induction of these responses is dependent on the type of anti-MHC II Ab used, suggesting that epitope specificity and/or the nature of ligation is important. Moreover, we demonstrate that MHC II-derived signals are strictly regulated by the order and timing of BCR and CD40 signals, suggesting coordination of these signals preserves the integrity of early B cell priming events. Thus, the mode and the context of MHC II ligation influence generation of MHC II-derived activating signals in resting B cells. Based on these results, a new model that highlights the role of MHC II-activating signals in regulation of Ag presentation by B cells is proposed.  相似文献   

4.
When naive CD4 T cells are primed, they rapidly differentiate into polarized Th1 and/or Th2 phenotypes. A major factor in producing such polarization is the early production of cytokines (IL-12 and IFN-gamma in the case of Th1 cells and IL-4 in the case of Th2 cells). One issue that remains unresolved is the source of the early IFN-gamma that synergizes with IL-12 to fully polarize CD4 T cells into Th1 cells. We have examined this question by injecting mice with anti-CD3 and examining cells from normal and various MHC-knockout mice. We found that IFN-gamma is induced rapidly in a small subset of CD8 T cells. This subset is absent in mice that lack beta2-microglobulin, but not in K(b)D(b)-double-knockout mice, indicating that these CD8 T cells are dependent on nonclassical MHC class Ib molecules. The early burst of IFN-gamma polarizes CD4 T cells toward Th1 cells, in part by stimulating the release of IL-12 from APC. We also use TAP- and CD1-knockout mice to show that such cells are not CD1-restricted NK T cells, nor are they dependent on TAP-1 transport for surface expression of the relevant MHC class Ib molecule. Therefore, they arise on MHC class Ib molecules that do not depend on TAP-1 transporters.  相似文献   

5.
Microglia subpopulations were studied in mouse experimental autoimmune encephalomyelitis and toxoplasmic encephalitis. CNS inflammation was associated with the proliferation of CD11b(+) brain cells that exhibited the dendritic cell (DC) marker CD11c. These cells constituted up to 30% of the total CD11b(+) brain cell population. In both diseases CD11c(+) brain cells displayed the surface phenotype of myeloid DC and resided at perivascular and intraparenchymatic inflammatory sites. By lacking prominent phagocytic organelles, CD11c(+) cells from inflamed brain proved distinct from other microglia, but strikingly resembled bone marrow-derived DC and thus were identified as DC. This brain DC population comprised cells strongly secreting IL-12p70, whereas coisolated CD11c(-) microglia/brain macrophages predominantly produced TNF-alpha, GM-CSF, and NO. In comparison, the DC were more potent stimulators of naive or allogeneic T cell proliferation. Both DC and CD11c(-) microglia/macrophages from inflamed brain primed naive T cells from DO11.10 TCR transgenic mice for production of Th1 cytokines IFN-gamma and IL-2. Resting microglia that had been purified from normal adult brain generated immature DC upon exposure to GM-CSF, while CD40 ligation triggered terminal maturation. Consistently, a functional maturation of brain DC was observed to occur following the onset of encephalitis. In conclusion, these findings indicate that in addition to inflammatory macrophage-like brain cells, intraparenchymatical DC exist in autoimmune and infectious encephalitis. These DC functionally mature upon disease onset and can differentiate from resident microglia. Their emergence, maturation, and prolonged activity within the brain might contribute to the chronicity of intracerebral Th1 responses.  相似文献   

6.
Microglia are the resident macrophage-like population in the CNS. Microglia remain quiescent until injury or infection activates the cells to perform effector inflammatory and APC functions. Our previous studies have shown that microglia infected with a neurotropic strain of Theiler's murine encephalomyelitis virus secreted innate immune cytokines and up-regulated costimulatory molecules and MHC class II, enabling the cells to present viral and myelin Ags to CD4+ T cells. Recently, TLRs have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. We examined TLR expression on brain microglia and their functional responses upon stimulation with various TLR agonists. We report that mouse microglia express mRNA for all of the recently identified TLRs, TLR1-9, used for recognition of bacterial and viral molecular patterns. Furthermore, stimulation of quiescent microglia with various TLR agonists, including LPS (TLR4), peptidoglycan (TLR2), polyinosinic-polycytidylic acid (TLR3), CpG DNA (TLR9), and infection with viable Theiler's murine encephalomyelitis virus, activated the cells to up-regulate unique patterns of innate and effector immune cytokines and chemokines at the mRNA and protein levels. In addition, TLR stimulation activated up-regulation of MHC class II and costimulatory molecules, enabling the microglia to efficiently present myelin Ags to CD4+ T cells. Thus, microglia appear to be a unique and important component of both the innate and adaptive immune response, providing the CNS with a means to rapidly and efficiently respond to a wide variety of pathogens.  相似文献   

7.
Microglia share a lineage relationship with bone marrow-derived monocytes/macrophages and dendritic cells, and their inclusion in retinal and brain transplants may function as "passenger leukocytes. " In other solid allografts, passenger leukocytes are the primary sources of immunogenicity, triggering alloimmune rejection. We have conducted a series of in vitro and in vivo studies examining the capacity of microglia cultured from forebrain to activate alloreactive T cells and to induce and elicit alloimmunity. Cultured microglia expressed class II MHC molecules and costimulatory molecules (B7-1, B7-2, and CD40), and they secreted IL-12. Cultured microglia injected s.c. into naive recipients induced allospecific delayed hypersensitivity and elicited delayed hypersensitivity directed at alloantigens. Cultured microglia differed from conventional APCs by secreting significant amounts of mature TGF-beta2, but smaller amounts of IL-12. Moreover, while both cultured microglia and conventional APC stimulated T cell proliferation in vitro, microglia directed the responding T cells toward the Th2 pathway in which IL-4, but not IL-2 and IFN-gamma, was secreted. The abilities of microglia to secrete TGF-beta2, to stimulate alloreactive Th2 cells, and to induce anterior chamber associated immune deviation when injected into the eye of naive allogeneic mice suggest that they are not typical passenger leukocytes. The unique functional properties of cultured microglia may account for the capacity of neonatal retinal tissue transplanted into the eye to alter the systemic alloimmune response in a manner that delays, but does not prevent, graft rejection.  相似文献   

8.
In this study we show that like MHC class I and class II molecules, cell surface CD1d expression on APC is regulated and affects T cell activation under physiological conditions. Although IFN-gamma alone is sufficient for optimum expression of MHC, CD1d requires two signals, one provided by IFN-gamma and a second mediated by microbial products or by the proinflammatory cytokine TNF. IFN-gamma-dependent CD1d up-regulation occurs on macrophages following infection with live bacteria or exposure to microbial products in vitro and in vivo. APC expressing higher CD1d levels more efficiently activate NKT cell hybridomas and primary NKT cells independently of whether the CD1d-restricted TCR recognizes foreign or self-lipid Ags. Our findings support a model in which CD1d induction regulates NKT cell activation.  相似文献   

9.
Lymphocyte activation gene-3 (LAG-3) is an MHC class II ligand expressed on activated T and NK cells. A LAG-3Ig fusion protein has been used in mice as an adjuvant protein to induce antitumor responses and specific CD8 and CD4 Th1 responses to nominal Ags. In this work we report on the effect of LAG-3Ig on the maturation and activation of human monocyte-derived dendritic cells (DC). LAG-3Ig binds MHC class II molecules expressed in plasma membrane lipid rafts on immature human DC and induces rapid morphological changes, including the formation of dendritic projections. LAG-3Ig markedly up-regulates the expression of costimulatory molecules and the production of IL-12 and TNF-alpha. Consistent with this effect on DC maturation, LAG-3Ig disables DC in their capacity to capture soluble Ags. These events are associated with the acquisition of professional APC function, because LAG-3Ig increases the capacity of DC to stimulate the proliferation and IFN-gamma response by allogeneic T cells. These effects were not observed when using ligation of MHC class II by specific mAb. Class II-mediated signals induced by a natural ligand, LAG-3, lead to complete maturation of DC, which acquire the capacity to trigger naive T cells and drive polarized Th1 responses.  相似文献   

10.
Human endothelial cells (EC) express MHC class II molecules in vivo and are likely to be involved in presentation of antigens to CD4(+) T cells. We examined, at the single-cell level, EC presentation of superantigens to resting CD4(+) memory T cells. Within 2 h of adherence to class II+ EC early T cell activation is evidenced by translocation of nuclear factor of activated T cells (NFAT), surface expression of CD69, and synthesis of IFN-gamma and IL-2. Naive T cells are not activated. T cell activation is dependent on the prior induction of MHC class II molecules on EC and is blocked by antibodies to LFA-3 (CD58). Our data place EC along a spectrum of antigen-presenting ability. Activated B cells and macrophages trigger more cells to express cytokines than do EC and at lower antigen concentrations; EC are in turn, superior to fibroblasts or smooth muscle cells. Furthermore, the concept of activation thresholds for cytokine synthesis within T cells also extends to earlier activation events: NFAT translocation is relatively easy to trigger, as is CD69 expression; fewer cells can be triggered to express IFN-gamma and fewer still to express IL-2. EC may, therefore, contribute to a graded immune response by inducing qualitatively and quantitatively different responses than professional APC.  相似文献   

11.
CD8(+) T cells infiltrating the CNS control infection by the neurotropic JHM strain of mouse hepatitis virus. Differential susceptibility of infected cell types to clearance by perforin or IFN-gamma uncovered distinct, nonredundant roles for these antiviral mechanisms. To separately evaluate each effector function specifically in the context of CD8(+) T cells, pathogenesis was analyzed in mice deficient in both perforin and IFN-gamma (PKO/GKO) or selectively reconstituted for each function by transfer of CD8(+) T cells. Untreated PKO/GKO mice were unable to control the infection and died of lethal encephalomyelitis within 16 days, despite substantially higher CD8(+) T cell accumulation in the CNS compared with controls. Uncontrolled infection was associated with limited MHC class I up-regulation and an absence of class II expression on microglia, coinciding with decreased CD4(+) T cells in CNS infiltrates. CD8(+) T cells from perforin-deficient and wild-type donors reduced virus replication in PKO/GKO recipients. By contrast, IFN-gamma-deficient donor CD8(+) T cells did not affect virus replication. The inability of perforin-mediated mechanisms to control virus in the absence of IFN-gamma coincided with reduced class I expression. These data not only confirm direct antiviral activity of IFN-gamma within the CNS but also demonstrate IFN-gamma-dependent MHC surface expression to guarantee local T cell effector function in tissues inherently low in MHC expression. The data further imply that IFN-gamma plays a crucial role in pathogenesis by regulating the balance between virus replication in oligodendrocytes, CD8(+) T cell effector function, and demyelination.  相似文献   

12.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

13.
Presentation of Ag bound to MHC class II (MHC II) molecules to CD4+ T cells is a key event in adaptive immune responses. Genetic differences in MHC II expression in the rat CNS were recently positioned to allelic variability in the CIITA gene (Mhc2ta), located within the Vra4 locus on rat chromosome 10. In this study, we have examined reciprocal Vra4-congenic strains on the DA and PVGav1 backgrounds, respectively. After experimental nerve injury the strain-specific MHC II expression on microglia was reversed in the congenic strains. Similar findings were obtained after intraparenchymal injection of IFN-gamma in the brain. Expression of MHC class II was also lower on B cells and dendritic cells from the DA.PVGav1-Vra4- congenic strain compared with DA rats after in vitro stimulation with IFN-gamma. We next explored whether Vra4 may affect the outcome of experimental autoimmune disease. In experimental autoimmune encephalomyelitis induced by immunization with myelin oligodendrocyte glycoprotein, DA.PVGav1-Vra4 rats displayed a lower disease incidence and milder disease course compared with DA, whereas both PVGav1 and PVGav1.DA-Vra4 rats were completely protected. These results demonstrate that naturally occurring allelic differences in Mhc2ta have profound effects on the quantity of MHC II expression in the CNS and on immune cells and that this genetic variability also modulates susceptibility to autoimmune neuroinflammation.  相似文献   

14.
We examined the role of MHC class II molecules in transducing signals to activated human T cells. Cross-linking of MHC class II molecules synergized with submitogenic amounts of anti-CD3 mAb in causing proliferation and secretion of the cytokines IL-2, IL-3, IFN-gamma, and TNF-alpha by MHC class II-alloreactive T cell lines. Signaling via MHC class II molecules in T cells resulted in activation of tyrosine kinases, in generation of inositol phosphates, and in Ca2+ mobilization that was abrogated by the tyrosine kinase inhibitor herbimycin A. Thus, like signaling via TCR/CD3, signaling via MHC class II molecules involved tyrosine kinase-dependent activation of phospholipase C, resulting in phosphoinositol turnover and Ca2+ flux. However the signaling pathways coupled to MHC class II molecules and to TCR/CD3 differed, because engagement of the transmembrane phosphatase CD45 inhibited Ca2+ fluxes triggered via TCR/CD3 but not Ca2+ fluxes triggered via MHC class II molecules.  相似文献   

15.
During chronic infection of mice with Toxoplasma gondii, gene message for IL-12p40, CD86, and the potassium channel Kv1.3 was detected in brain mononuclear cells, suggesting the presence of dendritic cells (DC) in the CNS. Consistently, cells bearing the DC markers CD11c and 33D1 were localized at inflammatory sites in the infected brain. The number of isolated CD11c+ brain cells increased until peak inflammation. The cells exhibited the surface phenotype of myeloid DC by coexpressing 33D1 and F4/80, little DEC-205, and no CD8alpha. These brain DC were mature, as indicated by high-level expression of MHC class II, CD40, CD54, CD80, and CD86. They triggered Ag-specific and primary allogeneic T cell responses at very low APC/T cell ratios. Among mononuclear cells from encephalitic brain, DC were the main producers of IL-12. Evidence for a parasite-dependent development of DC from CNS progenitors was obtained in vitro: after inoculation of primary brain cell culture with T. gondii, IL-12-secreting dendriform cells emerged, and DC marker genes were expressed. Different stimuli elicited the generation and maturation of brain DC: neutralization of parasite-induced GM-CSF prevented outgrowth of dendriform cells and concomitant release of IL-12. IL-12 production was up-regulated by external IFN-gamma but was stopped by inhibiting parasite replication. Consistently, DC isolated from GM-CSF-treated brain cell culture were activated to secrete IL-12 by exposure to parasite lysate. In sum, these results demonstrate T. gondii-induced expansion and functional maturation of DC in the CNS and, thus, highlight a mechanism that may contribute to the chronicity of the host response.  相似文献   

16.
This study focuses on the specific CD4+ T cell requirement for optimal induction of cytotoxicity against MHC class II negative autologous tumors (AuTu) collected from patients with various types of cancer at advanced stages. CD4+ T cells were induced in cultures of cancer patients' malignant effusion-associated mononuclear cells with irradiated AuTu (mixed lymphocyte tumor cultures (MLTC)) in the presence of recombinant IL-2 and recombinant IL-7. Tumor-specific CD4+ T cells did not directly recognize the AuTu cells, but there was an MHC class II-restricted cross-priming by autologous dendritic cells (DCs), used as APC. CD8+ CTL, also induced during the MLTC, lysed specifically AuTu cells or DCs pulsed with AuTu peptide extracts (acid wash extracts (AWE)) in an MHC class I-restricted manner. Removal of CD4+ T cells or DCs from the MLTC drastically reduced the CD8+ CTL-mediated cytotoxic response against the AuTu. AWE-pulsed DCs preincubated with autologous CD4+ T cells were able, in the absence of CD4+ T cells, to stimulate CD8+ T cells to lyse autologous tumor targets. Such activated CD8+ T cells produced IL-2, IFN-gamma, TNF-alpha, and GM-CSF. The process of the activation of AWE-pulsed DCs by CD4+ T cells could be inhibited with anti-CD40 ligand mAb. Moreover, the role of CD4+ T cells in activating AWE-pulsed DCs was undertaken by anti-CD40 mAb. Our data demonstrate for the first time in patients with metastatic cancer the essential role of CD4+ Th cell-activated DCs for optimal CD8+ T cell-mediated killing of autologous tumors and provide the basis for the design of novel protocols in cellular adoptive immunotherapy of cancer, utilizing synthetic peptides capable of inducing T cell help in vivo.  相似文献   

17.
Microglia and macrophages are important antigen-presenting cells (APCs) in the central nervous system (CNS). By virtue of their ability to express class II MHC antigens and costimulatory molecules such as CD40 and B7, microglia/macrophages promote Th1 cell activation and subsequent immune/inflammatory responses within the CNS. We have previously demonstrated that IFN-γ is the most potent inducer of CD40 expression on microglia. Our more recent studies have focused on the molecular basis of IFN-γ induced CD40 expression, and mechanisms by which this gene can be inhibited. The suppressive effects of IL-4 on CD40 expression will be discussed, as will the involvement of SH2 containing proteins called SOCS (for Suppressors Of Cytokine Signalling). Expression of CD40 by activated microglia/macrophages may contribute to the complex neuroimmunologic cascades that result in inflammation, demyelination and neuronal dysfunction. As such, understanding the mechanisms of inhibition of this molecule will be beneficial in diseases such as multiple sclerosis, HIV-1 associated dementia and Alzheimer's disease.  相似文献   

18.
CD4 and CD8 T lymphocytes infiltrate the parenchyma of mouse brains several weeks after intracerebral, intraperitoneal, or oral inoculation with the Chandler strain of mouse scrapie, a pattern not seen with inoculation of prion protein knockout (PrP(-/-)) mice. Associated with this cellular infiltration are expression of MHC class I and II molecules and elevation in levels of the T-cell chemokines, especially macrophage inflammatory protein 1beta, IFN-gamma-inducible protein 10, and RANTES. T cells were also found in the central nervous system (CNS) in five of six patients with Creutzfeldt-Jakob disease. T cells harvested from brains and spleens of scrapie-infected mice were analyzed using a newly identified mouse PrP (mPrP) peptide bearing the canonical binding motifs to major histocompatibility complex (MHC) class I H-2(b) or H-2(d) molecules, appropriate MHC class I tetramers made to include these peptides, and CD4 and CD8 T cells stimulated with 15-mer overlapping peptides covering the whole mPrP. Minimal to modest K(b) tetramer binding of mPrP amino acids (aa) 2 to 9, aa 152 to 160, and aa 232 to 241 was observed, but such tetramer-binding lymphocytes as well as CD4 and CD8 lymphocytes incubated with the full repertoire of mPrP peptides failed to synthesize intracellular gamma interferon (IFN-gamma) or tumor necrosis factor alpha (TNF-alpha) cytokines and were unable to lyse PrP(-/-) embryo fibroblasts or macrophages coated with (51)Cr-labeled mPrP peptide. These results suggest that the expression of PrP(sc) in the CNS is associated with release of chemokines and, as shown previously, cytokines that attract and retain PrP-activated T cells and, quite likely, bystander activated T cells that have migrated from the periphery into the CNS. However, these CD4 and CD8 T cells are defective in such an effector function(s) as IFN-gamma and TNF-alpha expression or release or lytic activity.  相似文献   

19.
The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.  相似文献   

20.
An ideal vaccine for induction of CD4(+) T cell responses should induce local inflammation, maturation of APC, and peptide loading of MHC class II molecules. Ligation of Toll-like receptor (TLR) 2 provides the first two of these three criteria. We have studied whether targeting of TLR2 results in loading of MHC class II molecules and enhancement of CD4(+) T cell responses. To dissociate MHC class II presentation from APC maturation, we have used an antagonistic, mouse anti-human TLR2 mAb (TL2.1) as ligand and measured proliferation of a mouse Ckappa-specific human CD4(+) T cell clone. TL2.1 mAb was 100-1000 times more efficiently presented by APC compared with isotype-matched control mAb. Moreover, TL2.1 mAb was internalized into endosomes and processed by the conventional MHC class II pathway. This novel function of TLR2 represents a link between innate and adaptive immunity and indicates that TLR2 could be a promising target for vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号