共查询到20条相似文献,搜索用时 15 毫秒
1.
Natalie K. Yeaney Min He† Ningfeng Tang† Alfred T. Malouf‡ Mary Ann O'Riordan§ Vance Lemmon¶ Cynthia F. Bearer† 《Journal of neurochemistry》2009,110(3):779-790
Fetal alcohol syndrome is a leading cause of mental retardation. The neuropathology found in patients with fetal alcohol syndrome overlaps with those with mutations in the gene for cell adhesion molecule (L1). We have previously shown that L1-mediated neurite outgrowth and L1 activation of extracellular receptor kinases 1/2 are inhibited at low concentrations of ethanol. One possible mechanism for this effect is through disruption of a tyrosine-based sorting signal, Y(1176)RSLE, on the cytoplasmic domain of L1. Our goal was to determine if ethanol inhibited the sorting signal or its phosphorylation state. Using cerebellar granule neurons and dorsal root ganglion neurons, we found that ethanol had no effect on L1 distribution to the growth cone or its ability to be expressed on the cell surface as determined by confocal microscopy. In cerebellar granule neurons, clustering of L1 resulted in increased dephosphorylation of Y(1176), increased L1 tyrosine phosphorylation, and an increase in the activation of pp60src as measured by immunoblot. All changes were inhibited by 25 mM ethanol. Using PP2 to inhibit pp60src activation resulted in inhibition of increases in L1 tyrosine and extracellular receptor kinases 1/2 phosphorylation, and Y(1176) dephosphorylation. We conclude that ethanol disrupts L1 trafficking/signaling following its expression on the surface of the growth cone, and prior to its activation of pp60src . 相似文献
2.
Tang N Farah B He M Fox S Malouf A Littner Y Bearer CF 《Journal of neurochemistry》2011,119(4):859-867
Fetal alcohol spectrum disorder is estimated to affect 1% of live births. The similarities between children with fetal alcohol syndrome and those with mutations in the gene encoding L1 cell adhesion molecule (L1) implicates L1 as a target of ethanol developmental neurotoxicity. Ethanol specifically inhibits the neurite outgrowth promoting function of L1 at pharmacologic concentrations. Emerging evidence shows that localized disruption of the lipid rafts reduces L1-mediated neurite outgrowth. We hypothesize that ethanol impairment of the association of L1 with lipid rafts is a mechanism underlying ethanol's inhibition of L1-mediated neurite outgrowth. In this study, we examine the effects of ethanol on the association of L1 and lipid rafts. We show that, in vitro, L1 but not N-cadherin shifts into lipid rafts following treatment with 25 mM ethanol. The ethanol concentrations causing this effect are similar to those inhibiting L1-mediated neurite outgrowth. Increasing chain length of the alcohol demonstrates the same cutoff as that previously shown for inhibition of L1-L1 binding. In addition, in cerebellar granule neurons in which lipid rafts are disrupted with methyl-beta-cyclodextrin, the rate of L1-mediated neurite outgrowth on L1-Fc is reduced to background rate and that this background rate is not ethanol sensitive. These data indicate that ethanol may inhibit L1-mediated neurite outgrowth by retarding L1 trafficking through a lipid raft compartment. 相似文献
3.
Pelech Steven L. Charest David L. Mordret Guy P. Siow Yaw Loong Palaty Chrystal Campbell Donna Charlton Lorin Samiei Mitra Sanghera Jasbinder S. 《Molecular and cellular biochemistry》1993,127(1):157-169
Mitogen activated protein (MAP) kinases and their target ribosomal protein S6 (RSK) kinases have been recognized as shared components in the intracellular signaling pathways of many diverse cytokines. Recent studies have extended this protein kinase cascade by identifying the major activator of vertebrate MAP kinases as a serine/threonine/tyrosine-protein kinase called MEK, which is related to yeast mating factor-regulated protein kinases encoded by the STE7 and byr1 genes. MEK, in turn, may be activated following its phosphorylation on serine by either of the kinases encoded by proto-oncogenesraf1 ormos, as well as by p78
mekk
, which is related to the yeast STE11 and byr2 gene products. Isoforms of all of these protein kinases may specifically combine to assemble distinct modules for intracellular signal transmission. However, the fundamental architecture of these protein kinase cascades has been highly conserved during eukaryotic evolution. 相似文献
4.
5.
Jiawei Shi Zhen Wang Xiaobin Guo Jining Shen Houyi Sun Jiaxiang Bai Binqing Yu Liangliang Wang Wei Zhou Yu Liu Wen Zhang Huilin Yang Yaozeng Xu Jun Zhou Dechun Geng 《Journal of cellular physiology》2020,235(3):2599-2608
Excessive osteoclast recruitment and activation is the chief cause of periprosthetic osteolysis and subsequent aseptic loosening, so blocking osteolysis may be useful for protecting against osteoclastic bone resorption. We studied the effect of aspirin on titanium (Ti)-particle-induced osteolysis in vivo and in vitro using male C57BL/6J mice randomized to sham (sham surgery), Ti (Ti particles), low-dose aspirin (Ti/5 mg·kg−1·d−1 aspirin), and high-dose aspirin (Ti/30 mg·kg−1·d−1 aspirin). After 2 weeks, a three-dimensional reconstruction evaluation using micro-computed tomography and histomorphology assessment were performed on murine calvariae. Murine hematopoietic macrophages and RAW264.7 lineage cells were studied to investigate osteoclast formation and function. Aspirin attenuated Ti-particle-induced bone erosion and reduced osteoclasts. In vitro, aspirin suppressed osteoclast formation, osteoclastic-related gene expression, and osteoclastic bone erosion in a dose-dependent manner. Mechanically, aspirin reduced osteoclast formation by suppressing receptor activator of nuclear factor kappa-B ligand-induced activation of extracellular signal-related kinase, p-38 mitogen-activated protein kinase, and c-Jun N-terminal kinase. Thus, aspirin may be a promising option for preventing and curing osteoclastic bone destruction, including peri-implant osteolysis. 相似文献
6.
7.
Watanabe H Yamazaki M Miyazaki H Arikawa C Itoh K Sasaki T Maehama T Frohman MA Kanaho Y 《Journal of neurochemistry》2004,89(1):142-151
Stimulation of the neuronal cell adhesion molecule L1 in cerebellar granule neurons (CGNs) enhances neurite outgrowth and this response is inhibited by the primary alcohol ethanol. Because primary alcohols suppress the formation of the signaling lipid phosphatidic acid (PA) by phospholipase D (PLD), this observation prompted us to investigate whether PLD plays a role in the L1-mediated neurite outgrowth in CGNs. In the cerebellum of postnatal day 8 mice, PLD2 protein was abundantly expressed, while PLD1 expression was not detected. The L1-stimulated neurite outgrowth was inhibited by primary alcohols and by overexpression of lipase-deficient PLD2. Increases in cellular PA levels by direct PA application or overexpression of wild-type PLD2 mimicked the L1-dependent stimulation of neurite outgrowth. Furthermore, it was found that L1 stimulation in CGNs increased PLD activity concomitantly with phosphorylation of extracellular signal-regulated kinase (ERK), both of which were inhibited by the MAP kinase-ERK kinase (MEK) inhibitor. These results provide evidence that PLD2 functions as a downstream signaling molecule of ERK to mediate the L1-dependent neurite outgrowth of CGNs, a mechanism that may be related to alcohol-related neurodevelopmental disorders. 相似文献
8.
9.
Elevated levels of phenylalanine (Phe) as observed in patients with phenylketonuria interfere with proper neuronal development, leading to severe psychomotor deficits and mental retardation. We have analyzed the effects of Phe on neurite outgrowth in vitro. When expressed in fibroblasts, the neuronal cell adhesion molecules L1 and plexin B3 strongly increase the length of neurites emanating from cerebellar neurons in co-culture experiments. Elevated Phe blocks L1-mediated, but not plexin B3-mediated outgrowth, whereas tyrosine is ineffective. Elevated Phe also interferes with aggregation of fibroblasts overexpressing L1, suggesting that the pathological effect of elevated Phe occurs by interfering with L1-mediated cell adhesion. 相似文献
10.
Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development 下载免费PDF全文
Sakurai T Lustig M Babiarz J Furley AJ Tait S Brophy PJ Brown SA Brown LY Mason CA Grumet M 《The Journal of cell biology》2001,154(6):1259-1273
The structurally related cell adhesion molecules L1 and Nr-CAM have overlapping expression patterns in cerebellar granule cells. Here we analyzed their involvement in granule cell development using mutant mice. Nr-CAM-deficient cerebellar granule cells failed to extend neurites in vitro on contactin, a known ligand for Nr-CAM expressed in the cerebellum, confirming that these mice are functionally null for Nr-CAM. In vivo, Nr-CAM-null cerebella did not exhibit obvious histological defects, although a mild size reduction of several lobes was observed, most notably lobes IV and V in the vermis. Mice deficient for both L1 and Nr-CAM exhibited severe cerebellar folial defects and a reduction in the thickness of the inner granule cell layer. Additionally, anti-L1 antibodies specifically disrupted survival and maintenance of Nr-CAM-deficient granule cells in cerebellar cultures treated with antibodies. The combined results indicate that Nr-CAM and L1 play a role in cerebellar granule cell development, and suggest that closely related molecules in the L1 family have overlapping functions. 相似文献
11.
Dong L Chen S Bartsch U Schachner M 《Biochemical and biophysical research communications》2003,301(1):60-70
The recognition molecule L1 plays important functional roles in the nervous system and in non-neural tissues. Since antibodies to L1 are of prime importance to study its functional properties, we have generated affinity matured human single chain variable fragment (scFv) antibodies against mouse L1 by introducing random mutations in the complementarity determining regions (CDRs) of a previously isolated scFv antibody heavy chain (CDR1 and CDR2) and light chain (CDR3). After biopanning the mutant library, a clone (5F7) that gave the strongest ELISA signal was expressed, purified, and characterized. The dissociation constant of 5F7 (2.86 x 10(-8)M) was decreased 60-fold compared to the wild type clone G6 (1.72 x 10(-6)M). 5F7 detected L1 by Western blot analysis in mouse brain homogenates and recognized L1 in L1 transfected cells and cryosections from mouse retina and optic nerve by immunofluorescence. Bivalent 5F7 scFv antibody (5F7-Cys) was also generated and showed a dissociation constant of 5.22 x 10(-9)M that is 5.5-fold lower than that of monomeric 5F7 antibody. The bivalent affinity matured L1 scFv antibody thus showed stronger binding by a factor of 310 compared to the wild type clone. This antibody should be useful in various biological assays. 相似文献
12.
Song YJ Lee JY Joo HK Kim HS Lee SK Lee KH Cho CH Park JB Jeon BH 《Biochemical and biophysical research communications》2008,368(1):68-73
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. In this study we evaluated the protective role of Tat-mediated APE1/ref-1 transduction on the tumor necrosis factor (TNF)-α-activated endothelial activation in cultured human umbilical vein endothelial cells. To construct Tat-APE1/ref-1 fusion protein, human full length of APE1/ref-1 was fused with Tat-protein transduction domain. Purified Tat-APE1/ref-1 fusion protein efficiently transduced cultured endothelial cells in a dose-dependent manner and reached maximum expression at 1 h after incubation. Transduced Tat-APE1/ref-1 showed inhibitory activity on the TNF-α-induced monocyte adhesion and vascular cell adhesion molecule-1 expression in cultured endothelial cells. These results suggest Tat-APE1/ref-1 might be useful to reduce vascular endothelial activation or vascular inflammatory disorders. 相似文献
13.
Salina Louie Amy Heidersbach Noelia Blanco Benjamin Haley Christopher M. Rose Peter S. Liu Mandy Yim Danming Tang Cynthia Lam Wendy N. Sandoval David Shaw Brad Snedecor Shahram Misaghi 《Biotechnology progress》2020,36(3):e2951
Chinese hamster ovary (CHO) cells have been adapted to grow in serum-free media and in suspension culture to facilitate manufacturing needs. Some CHO cell lines, however, tend to form cell aggregates while being cultured in suspension. This can result in reduced viability and capacity for single cell cloning (SCC) via limiting dilution, and process steps to mitigate cell aggregate formation, for example, addition of anti-cell-aggregation agents. In this study, we have identified endothelial intercellular cell adhesion molecule 1 (ICAM-1) as a key protein promoting cell aggregate formation in a production competent CHO cell line, which is prone to cell aggregate formation. Knocking out (KO) the ICAM-1 gene significantly decreased cell aggregate formation in the culture media without anti-cell-aggregation reagent. This trait can simplify the process of transfection, selection, automated clone isolation, and so on. Evaluation in standard cell line development of ICAM-1 KO and wild-type CHO hosts did not reveal any noticeable impacts on titer or product quality. Furthermore, analysis of a derived nonaggregating cell line showed significant reductions in expression of cell adhesion proteins. Overall, our data suggest that deletion of ICAM-1 and perhaps other cell adhesion proteins can reduce cell aggregate formation and improve clonality assurance during SCC. 相似文献
14.
A yeast two-hybrid screen using the last 28 amino acids of the cytoplasmic domain of the neural cell adhesion molecule L1 identified RanBPM as an L1-interacting protein. RanBPM associates with L1 in vivo and the N-terminal region of RanBPM (N-RanBPM), containing the SPRY domain, is sufficient for the interaction with L1 in a glutathione S-transferase pull-down assay. L1 antibody patching dramatically changes the subcellular localization of N-RanBPM in transfected COS cells. Overexpression of N-RanBPM in COS cells reduces L1-triggered extracellular signal-regulated kinase 1/2 activation by 50% and overexpression of N-RanBPM in primary neurons inhibits L1-mediated neurite outgrowth and branching. These data suggest that RanBPM is an adaptor protein that links L1 to the extracellular signal-regulated kinase/MAPK pathway. 相似文献
15.
David Lutz Gerrit Wolters‐Eisfeld Melitta Schachner Ralf Kleene 《Journal of neurochemistry》2014,128(5):713-724
The cell adhesion molecule L1 regulates cellular responses in the developing and adult nervous system. Here, we show that stimulation of cultured mouse cerebellar neurons by a function‐triggering L1 antibody leads to cathepsin E‐mediated generation of a sumoylated 30 kDa L1 fragment (L1‐30) and to import of L1‐30 into the nucleus. Mutation of the sumoylation site at K1172 or the cathepsin E cleavage site at E1167 abolishes generation of L1‐30, while mutation of the nuclear localization signal at K1147 prevents nuclear import of L1‐30. Moreover, the aspartyl protease inhibitor pepstatin impairs the generation of L1‐30 and inhibits L1‐induced migration of cerebellar neurons and Schwann cells as well as L1‐dependent in vitro myelination on axons of dorsal root ganglion neurons by Schwann cells. L1‐stimulated migration of HEK293 cells expressing L1 with mutated cathepsin E cleavage site is diminished in comparison to migration of cells expressing non‐mutated L1. In addition, L1‐stimulated migration of HEK293 cells expressing non‐mutated L1 is also abolished upon knock‐down of cathepsin E expression and enhanced by over‐expression of cathepsin E. The findings of the present study indicate that generation and nuclear import of L1‐30 regulate neuronal and Schwann cell migration as well as myelination.
16.
Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix 总被引:19,自引:0,他引:19
Regulation of cell migration/invasion is important for embryonic development, immune function, and angiogenesis. However, migratory cells must also coordinately activate survival mechanisms to invade the extracellular matrix and colonize foreign sites in the body. Although invasive cells activate protective programs to survive under diverse and sometimes hostile conditions, the molecular signals that regulate these processes are poorly understood. Evidence is provided that signals that induce cell invasion also promote cell survival by suppressing apoptosis of migratory cells. Extracellular-regulated kinase (ERK) activation and molecular coupling of the adaptor proteins p130 Crk-associated substrate (CAS) and c-CrkII (Crk) represent two distinct pathways that induce cell invasion and protect cells from apoptosis in a three-dimensional collagen matrix. CAS/Crk-mediated cell invasion and survival requires activation of the small GTPase Rac, whereas ERK-induced cell invasion, but not survival requires myosin light chain kinase activation and myosin light chain phosphorylation. Uncoupling CAS from Crk or inhibition of ERK activity prevents migration and induces apoptosis of invasive cells. These findings provide molecular evidence that during invasion of the extracellular matrix, cells coordinately regulate migration and survival mechanisms through ERK activation and CAS/Crk coupling. 相似文献
17.
Summary Doubts exist as to whether afferent nerve fibers exert a neurotrophic effect on the differentiation of sensory cells in the developing vestibular neuroepithelium. To determine whether innervation of hair cells precedes their differentiation, we have used the L1 adhesion molecule as a marker for axons. The detection of L1 on afferent axons in the otic vesicle of mouse embryos on gestation day 11 shows that nerve fibers penetrate the neuroepithelium before the sensory cells differentiate. L1-immunoreactivity of nerve endings also reveals the considerable fiber ramification on gestation days 14 and 15, i.e., corresponding to the first stages of sensory cell differentiation. The expression of L1 at successive stages of nerve fiber growth in the neuroepithelium, such as fasciculation and ramification, is not consistent with the previous role proposed for L1 as a fascicule-promoting factor and raises the possibility that other mechanisms are involved in L1 mediaded adhesion. 相似文献
18.
The release of proinflammatory cytokines after mycobacterial infection is a host immune response that may be propitious or deleterious to the host. Elevated levels of interleukin (IL)-6 are present in plasma of patients with active tuberculosis infection. The aim of this study was to investigate the role of mitogen-activated protein kinases in the secretion of interleukin-6 in THP-1 cells and human primary monocytes that were infected with Mycobacterium tuberculosis H37Rv, and its regulation by N-acetyl-L-cysteine, a potential antimycobacterial agent. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv induced rapidly, in a time-dependent manner, the phosphorylation of mitogen-activated protein kinase kinase 3/6 and p38 mitogen-activated protein kinase, accompanied by an upregulation of interleukin-6. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and nuclear factor-kappaB, we found that extracellular-signal regulated kinase 1/2, p38 mitogen-activated protein kinase and nuclear factor-kappaB were essential for M. tuberculosis H37Rv-induced interleukin-6 production in human primary monocytes. Pretreatment with N-acetyl-L-cysteine reduced, in a dose-dependent manner, M. tuberculosis H37Rv-induced activation of mitogen-activated protein kinase kinase 3/6 and interleukin-6 production in THP-1 cells. 相似文献
19.
20.
Otto VI Gloor SM Frentzel S Gilli U Ammann E Hein AE Folkers G Trentz O Kossmann T Morganti-Kossmann MC 《Journal of neurochemistry》2002,80(5):824-834
Severe traumatic brain injury stimulates the release of soluble intercellular adhesion molecule-1 (sICAM-1) into CSF. Studies in cultured mouse astrocytes suggest that sICAM-1 induces the production of macrophage inflammatory protein-2 (MIP-2). In the present study, we investigated the underlying mechanisms for MIP-2 induction. sICAM-1 induced MIP-2 in astrocytes lacking membrane-bound ICAM-1, indicating that its action is due to heterophilic binding to an undescribed receptor rather than homophilic binding to surface ICAM-1. Signal transduction may be mediated by src tyrosine kinases, as the src tyrosine kinase inhibitors herbimycin A and PP2 abolished MIP-2 induction by sICAM-1. Phosphorylation of p42/44 mitogen-activated protein kinase (MAPK), but not of p38 MAPK, occurred further downstream, as evidenced by western blot analysis combined with the use of herbimycin A and specific MAPK inhibitors. By contrast, induction of MIP-2 by tumour necrosis factor-alpha (TNF-alpha) involved both p42/44 MAPK and p38 MAPK. Following stimulation with either sICAM-1 or TNF-alpha, astrocyte supernatants promoted chemotaxis of human neutrophils and incubation of these supernatants with anti-MIP-2 antibodies more efficiently suppressed the migration induced by sICAM-1 than by TNF-alpha. These results show that sICAM-1 induces the production of biologically active MIP-2 in astrocytes by heterophilic binding to an undefined receptor and activation of src tyrosine kinases and p42/44 MAPK. 相似文献