首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1. After observing that juvenile roach fed intensively on cyanobacteria and that cyanobacteria were densely colonized by heterotrophic bacteria, we tested whether the bacteria are used by underyearling roach and the extent to which they contribute to the energy requirements of the fish.
2. We radiolabelled attached bacteria in a natural cyanobacterial suspension, fed the fish with these particles, and estimated their assimilation by roach. Biomass of attached bacteria on cyanobacteria increased with the proportion of the cyanobacterium Microcystis in total cyanobacteria. Biomass-specific thymidine incorporation of attached bacteria was higher than that of free bacteria.
3. In feeding experiments, we detected assimilation of bacterial biomass into muscle tissue of underyearling roach. Fish consumed Microcystis to a lesser extent compared with Aphanizomenon but assimilation of attached bacteria was higher when roach fed on Microcystis because of the higher biomass of epibacteria on this cyanobacterium. However, biomass of attached bacteria was too low to be an important food source for underyearling roach.
4. We conclude that assimilation of epibacteria from cyanobacteria cannot explain the success of roach in eutrophic lakes.  相似文献   

2.
1. The ability of roach to use cyanobacterial food is generally believed to be one reason for the dominance of roach over perch in eutrophic European lakes. The aim of this study was to test whether cyanobacteria really are a suitable food for juvenile roach. Special attention was paid to differences between the two cyanobacteria species Aphanizomenon and Microcystis which are common in eutrophic lakes and are ingested by roach there.
2. We performed growth and behaviour experiments with juvenile roach fed with zooplankton and the different cyanobacteria. Growth rate with Aphanizomenon was lower than with Daphnia but significantly higher than without food, whereas growth rate with Microcystis was as low as without food.
3. In cultivation experiments of roach faeces, Microcystis was found not to have been digested and grew exponentially after passing through the gut whereas Aphanizomenon stayed at low biomass. Differences in growth were not related to the toxin content of cyanobacteria. Investigations of roach motility showed no differences whether fed with Aphanizomenon or Microcystis .
4. In contrast to Microcystis , Aphanizomenon can be regarded as a suitable food source for juvenile roach probably because of its better digestability. We conclude that the ability to feed on cyanobacteria is not a general competitive advantage for roach, but the outcome depends on the species composition of the cyanobacteria.  相似文献   

3.
A quantitative comparison of the grazing behaviour of young Oreochromis niloticus feeding on the planktonic cyanobacterium Microcystis aeruginosa and a periphytic community dominated by the cyanobacterium Oscillatoria sp., determined that biomass ingestion rates of fish filter-feeding on planktonic cyanobacteria were significantly lower than those surface-grazing on periphyton. Comparisons of published laboratory data on filter-feeding with field data on algal ingestion rates suggest that filter-feeding may be a relatively unimportant method of ingesting algae.  相似文献   

4.
文章选择两种特征不同的微囊藻——产毒的铜绿微囊藻(Microcystis aeruginosa)和无毒的惠氏微囊藻(Microcystis wesenbergii),分别以不同的接种比例(1﹕2、1﹕1和2﹕1)与产土臭素(Geosmin)的柔细束丝藻(Aphanizomenon gracile)混合培养,以探索种间相互作用对藻类生长和束丝藻土臭素合成与释放的影响。结果表明,在共培养条件下,两种微囊藻均抑制了柔细束丝藻的生长,而柔细束丝藻却促进了两种微囊藻的生长。惠氏微囊藻促进了柔细束丝藻土臭素的释放(接种比例为1﹕1时,束丝藻胞外土臭素的细胞份额达到269.43 fg/cell),仅在生长早期与生长受到抑制阶段促进了土臭素的合成;铜绿微囊藻在共培养早期促进了束丝藻土臭素的合成,但共培养却抑制了土臭素的释放,而且在共培养的中后期已检测不到土臭素。研究结果表明,在自然水体中束丝藻与微囊藻的季节演替过程中,微囊藻在与束丝藻的竞争中处于优势,且微囊藻对束丝藻的竞争压力促使后者合成异味物质,随着束丝藻的消亡可能伴随大量异味物质的释放,增加异味事件发生风险。  相似文献   

5.
In the Enonselkä and Laitialanselkä basins of Lake Vesijärvi, perch Perca fluviatilis and roach Rutilus rutilus were abundant in the littoral and in the pelagic zones throughout the summer. In the littoral zone, roach was always more numerous than perch, while perch dominated in the open water. Intraspecific diet overlap values were higher than interspecific values. In the pelagic zone, perch <155 mm fed mainly on the cladoceran Leptodora kindtii , while small bosminids were most important food items for roach. Large perch were piscivorous, feeding mainly on smelt Osmerus eperlanus . In the littoral zone small perch foraged on zooplankton and chironomid larvae and large perch on chironomids and fish (small perch). Small roach fed mainly on bosminids and detritus, while for roach <185 mm macrophytes ( Elodea Canadensis, Lemna trisulca ) were also of importance. Detritus was more common in the food of roach in Laitialanselkä than in Enonselkä. The slower growth rate of roach in Laitialanselkä compared with Enonselkä was probably connected with this. However, considering the latitude of the lake, the growth rate of both roach and perch was relatively fast in both basins. The results indicated that in a large lake both perch and roach are able to utilize effectively the different habitats and diverse food resources. By segregation in food resource utilization they are able to co-exist in large quantities, at the same time maintaining a relatively fast growth rate.  相似文献   

6.
Abstract The cellular glycogen pool and nitrate reductase activity were measured in the cyanobacterium Phormidium uncinatum after infection with cyanophage LPP-1, under both light and dark conditions. While dark incubation of the cyanobacterium reduced the glycogen level, the nitrate reductase (NR) activity remained almost unchanged. Furthermore, cyanophage multiplication enhances cellular glycogen level and NR activity in both illuminated and dark-incubated cyanobacterial cultures. Cyanophage-mediated increase in host nitrate assimilation appears to support the high protein demand for its reproductive cycle.  相似文献   

7.
The effect of 21 days of starvation, followed by a period of compensatory growth during refeeding, was studied in juvenile roach Rutilus rutilus during winter and summer, at 4, 20 and 27° C acclimation temperature and at a constant photoperiod (12L : 12D). Although light conditions were the same during summer and winter experiments and fish were acclimated to the same temperatures, there were significant differences in a range of variables between summer and winter. Generally winter fish were better prepared to face starvation than summer fish, especially when acclimated at a realistic cold season water temperature of 4° C. In winter, the cold acclimated fish had a two to three‐fold larger relative liver size with an approximately double fractional lipid content, in comparison to summer animals at the same temperature. Their white muscle protein and glycogen concentration, but not their lipid content, were significantly higher. Season, independent of photoperiod or reproductive cycle, was therefore an important factor that determined the physiological status of the animal, and should generally be taken into account when fish are acclimated to different temperature regimes. There were no significant differences between seasons with respect to growth. Juvenile roach showed compensatory growth at all three acclimation temperatures with maximal rates of compensatory growth at 27° C. The replenishment of body energy stores, which were utilized during the starvation period, was responsible for the observed mass gain at 4° C. The contribution of the different energy resources (protein, glycogen and lipid) was dependent on acclimation temperature. In 20 and 27° C acclimated roach, the energetic needs during food deprivation were met by metabolizing white muscle energy stores. While the concentration of white muscle glycogen had decreased after the fasting period, the concentrations of white muscle lipid and protein remained more or less constant. The mobilization of protein and fat was revealed by the reduced size of the muscle after fasting, which was reflected in a decrease in condition factor. At 20° C, liver lipids and glycogen were mobilized, which caused a decrease both in the relative liver size and in the concentration of these substrates. Liver size was also decreased after fasting in the 4° C acclimated fish, but the substrate concentrations remained stable. This experimental group additionally utilized white muscle glycogen during food deprivation. Almost all measured variables were back at the control level within 7 days of refeeding.  相似文献   

8.
9.
The influence of infection with trematode metacercariae on some physiological and biochemical characteristics has been studied in the underyearlings of roach. The parameters that were studied are found to depend on the parasite localization. The body length and weight values of infected underyearlings with muscular localization of metacercariae are lower than in uninfected fish and the glycogen content is higher. On the contrary, individuals with infected eyes display greater body length and weight when coupled with lower glycogen content in comparison with parasite-free fish. The infection with metacercariae has no effect on the activity of glycosidases. Different glycogen levels in the underyearlings with muscular and ocular localization of metacercariae are presumably linked with the locomotor activity of the fish.  相似文献   

10.
SUMMARY

The mean assimilation efficiency of aquarium acclimatized Oreochromis mossambiaue fed on a diet of Microcystis aeruginosa collected from Hartbeespoort Dam was determined as 50,8% for total organic matter, 63,7% for protein and 75,5% for phosphorus. Transmission electron microscopic examination of faeces of fish fed on M. aeruginosa, revealed that most Microcystis cell walls had become permeable allowing cell contents to leach out. Further digestion resulted in the break down of the cell wall structure. Up to 25% of the cells, however, appeared intact after passing through the fish. Fish fed on a diet of M. aeruginosa lost mass initially, but after 21 days showed a slight gain in mass. The high protein content of M. aeruginosa nay have inhibited efficient metabolism and would have led to reduced growth in fish.  相似文献   

11.
A bloom of the filamentous, N2-fixing cyanobacterium Aphanizomenonovalisporum Forti occurred for the first time in Lake Kinneretduring late summer and fall 1994. During subsequent years (1995–1999),Aphanizomenon also appeared in late summer and fall, but didnot bloom. In outdoor microcosm experiments, we examined zooplanktongrazing on Lake Kinneret phytoplankton, with and without Aphanizomenonpresent, and the effects of N, P and N:P ratios on phytoplanktongrowth. In one-day feeding experiments, clearance and grazingrates of the ambient Lake Kinneret zooplankton assemblage feedingin lake water dominated by Aphanizomenon were 10-fold lowerthan in water without Aphanizomenon. We suspect that the lowgrazing rates were due to interference caused by the presenceof Aphanizomenon. In 9-day nutrient addition experiments, significantenhancement effects on phytoplankton were detected with additionsof either P or N; a high N:P was better for phytoplankton growththan a low N:P. After 7 days, bottles receiving low P and noN additions were dominated by Oscillatoria sp. and Closteriumacutum; few Aphanizomenon were present. In contrast, bottlesreceiving high P and N additions had large increases of Aphanizomenon,as well as Oscillatoria and Closterium. There was a tendencyfor more green algae and diatoms with increasing N additions.These results provide evidence that (i) non-grazeability ofAphanizomenon enabled it to gain a competitive advantage overgrazeable phytoplankton, and (ii) that nutrient limitation,but not grazing, was probably important in the eventual declineof the Aphanizomenon bloom.  相似文献   

12.
1. In adult and juvenile roach (Rutilus rutilus) feeding on meal worms or grass and acclimated to temperatures between 6 and 20 degrees C the following variables were determined: pH, protein and proteolytic activity of gut fluid and faeces, food consumption, duration of gut passage and efficiency of protein assimilation. 2. Proteolytic enzymes of fish are very stable against autolysis but they disappear in posterior portions of the intestine, suggesting the existence of a pinocytotic process. 3. In herbivorous roach as well as in adult carnivorous roach feeding at 20 degrees C this results in very low proteolytic activities in the faeces, whereas in juvenile fish and in adults feeding on meal worms at lower temperatures, the process of reabsorption seems to be less efficient. 4. Daily production of proteases as well as "daily proteolytic duration" are higher in herbivorous than in carnivorous roach. 5. For the same amount of protein consumed, fish feeding on grass require 10 times higher proteolytic activities than fish feeding on meal worms.  相似文献   

13.
Feeding and growth responses of roach from three size classes to alarm substance (Schreckstoff) were quantified in laboratory experiments. Larger fish (60.0–80.0 mm in length) reacted stronger to treatment than two smaller sized groups (35.0–45.0 and 46.0–55.0 mm) lowering feeding rate by 80 and 40 and 50%, respectively. The reduction in feeding rate of larger fish caused decrease in growth rate in length and weight, while the lowered consumption of smaller fish caused only reduction in growth rate in weight. Condition factor of exposed to alarm substance small sized roach was lower than that of the control individuals and roach from other two size classes, both, treated and untreated. The difference in growth response to a danger of predation has its roots probably in different metabolism and growth rates of small and large fish. Small fish have higher metabolic rate and less lipid reserves than larger ones, therefore they are probably forced to feed to be able to grow. Also, small sized roach is more vulnerable to predation than large sized fish, thus growing fast seem to be crucial for survival in a risky environment. Study shows that small roach trade off their safety against food, feeding in risky environment to sustain fast growth. This ability of fast outgrowing of a dangerous, vulnerable to predators, size increases survival of juveniles in dangerous environment.  相似文献   

14.
Microcystins, toxins produced by cyanobacteria, may play a role in fish kills, although their specific contribution remains unclear. A better understanding of the eco-toxicological effects of microcystins is hampered by a lack of analyses at different trophic levels in lake foodwebs. We present 3 years of monitoring data, and directly compare the transfer of microcystin in the foodweb starting with the uptake of (toxic) cyanobacteria by two different filter feeders: the cladoceran Daphnia galeata and the zebra mussel Dreissena polymorpha. Furthermore foodwebs are compared in years in which the colonial cyanobacterium Microcystis aeruginosa or the filamentous cyanobacterium Planktothrix agardhii dominated; there are implications in terms of the types and amount of microcystins produced and in the ingestion of cyanobacteria. Microcystin concentrations in the seston commonly reached levels where harmful effects on zooplankton are to be expected. Likewise, concentrations in zooplankton reached levels where intoxication of fish is likely. The food chain starting with Dreissena (consumed by roach and diving ducks) remained relatively free from microcystins. Liver damage, typical for exposure to microcystins, was observed in a large fraction of the populations of different fish species, although no relation with the amount of microcystin could be established. Microcystin levels were especially high in the livers of planktivorous fish, mainly smelt. This puts piscivorous birds at risk. We found no evidence for biomagnification of microcystins. Concentrations in filter feeders were always much below those in the seston, and yet vectorial transport to higher trophic levels took place. Concentrations of microcystin in smelt liver exceeded those in the diet of these fish, but it is incorrect to compare levels in a selected organ to those in a whole organism (zooplankton). The discussion focuses on the implications of detoxication and covalent binding of microcystin for the transfer of the toxin in the foodweb. It seems likely that microcystins are one, but not the sole, factor involved in fish kills during blooms of cyanobacteria.  相似文献   

15.
A phytoplankton-lytic (PL) bacterium, Bacillus cereus, capable of lysing the bloom-forming cyanobacterium Aphanizomenon flos-aquae was isolated from Lake Dianchi of Yunnan province, China. This bacterium showed lytic activities against a wide range of cyanobacteria/algae, including A. flos-aquae, Microcystis viridis, Microcystis wesenbergi, Microcystis aeruginosa, Chlorella ellipsoidea, Oscillatoria tenuis, Nostoc punctiforme, Anabaena flos-aquae, Spirulina maxima, and Selenastrum capricornutum. Chlorophyll a contents, phycocyanin contents, and photosynthetic activities of the A. flos-aquae decreased evidently in an infected culture for a period. Bacterium B. cereus attacked rapidly A. flos-aquae cells by cell-to-cell contact mechanism. It was shown that the lysis of A. flos-aquae began with the breach of the cyanobacterial cell wall, and the cyanobacterial cell appeared abnormal in the presence of the PL bacterium. Moreover, transmission electron microscope examinations revealed that a close contact between the bacterium and the cyanobacterium was necessary for lysis. Some slime extrusions produced from B. cereus assisted the bacterial cells to be in close association with and lyse the cyanobacterial cells. These findings suggested that this bacterium could play an important role in controlling the Aphanizomenon blooms in freshwaters.  相似文献   

16.
Crucian carp from populations that lack piscivores are extremely vulnerable to predation. However, in the presence of piscivores these fish develop an inducible morphological defence, a deep body. This switch from a vulnerable, shallow-bodied morph to a morphologically defended morph makes this species very suitable for investigations of anti-predator strategies, and trade-offs between morphological and behavioural defences. To address these questions, we performed eight different experiments. We found that crucian carp exhibited fright responses to chemical cues from unfamiliar predators (northern pike, perch) when these were fed prey that contained alarm substance (for northern pike: crucian carp, roach; for perch: crucian carp). Cues from small pike that were fed prey that lacked alarm substance (swordtails) caused no significant fright response whereas cues from larger pike with the same diet did. Perch on a chironomid diet elicited weaker but significant fright responses. Starved predators caused as strong fright reactions as recently fed ones did, whereas no response was exhibited towards nonpredatory fish (roach, crucian carp). Crucian carp were able to detect the presence of pike after cues had been diluted to an equivalent of 21 000 l, and larger predators elicited stronger fright responses. Prior experience of predators decreased fright responses. In particular, individuals from populations that coexisted with northern pike responded less to chemical cues from northern pike than individuals without prior experience did. Thus, crucian carp may use both alarm-substance related and predator-related cues to identify predators. Further, they were able to discriminate between large and small predators. Finally, individuals from populations that coexist with predators exhibit less pronounced fright responses. These fish have an induced morphological defence, a deep body, which most likely decreases the need for strong antipredator behaviour.  相似文献   

17.
1. In order to test the effect of Ochromonas sp. , a mixotrophic chrysophyte, on cyanobacteria, grazing experiments were performed under controlled conditions. We studied grazing on three Microcystis aeruginosa strains, varying in toxicity and morphology, as well as on one filamentous cyanobacterium, Pseudanabaena sp. Furthermore, we analysed the co-occurrence of Ochromonas and Microcystis in natural systems in relation to various environmental parameters (TP, TN, DOC, temperature, pH), using data from 460 Norwegian lakes.
2.  Ochromonas was able to feed on all four cyanobacterial strains tested, and grew quickly on all of them. The chrysophyte caused net growth reductions in all three Microcystis strains (the very toxic single-celled strain PCC 7806; the less toxic colony-forming Bear AC and the less toxic single-celled Spring CJ). The effect of Ochromonas was strongest on the Spring CJ strain. Although the effect of Ochromonas grazing on the growth of Pseudanabaena was relatively smaller, it also reduced the net growth of this cyanobacterium significantly.
3. After 4 days of incubation with Ochromonas the total amount of cyanotoxins in the three Microcystis strains was reduced by 91.1–98.7% compared with the controls.
4.  Ochromonas occurred in similar densities across all 460 Norwegian lakes. Microcystis occurred only at higher TN, TP, temperature and pH values, although its density was often several orders of magnitude higher than that of Ochromonas . Ochromonas co-occurred in 94% of the samples in which Microcystis was present.
5. From our study it is not clear whether Ochromonas could control Microcystis blooms in natural lakes. However, our study does demonstrate that Ochromonas usually occurs in lakes with Microcystis , and our small scale experiments show that Ochromonas can strongly reduce the biomass of Microcystis and its toxin content.  相似文献   

18.
SUMMARY 1. The feeding behaviour of the zebra mussel ( Dreissena polymorpha ) was studied in the laboratory on different combinations of food, including a green alga ( Chlamydomonas reinhardtii ) and toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa .
2. The highest clearance rate of phytoplankton by zebra mussels was found when the mussels were feeding on a mixture of Chlamydomonas and non-toxic Microcystis , the lowest on a mixture of Chlamydomonas and toxic Microcystis .
3. The differences found in the clearance rates between food combinations can be partly explained by the production of pseudofaeces containing live phytoplankton cells. Zebra mussels expelled significantly more live phytoplankton cells in the presence of toxic Microcystis than in the presence of non-toxic Microcystis . The pseudofaeces contained predominantly live Chlamydomonas cells. Proportionately much less live Microcystis cells were encountered in the pseudofaeces.
4. Consequently, grazing of zebra mussels on a combination of Chlamydomonas and Microcystis may finally result in a dominance of Chlamydomonas over Microcystis . The presence of toxic Microcystis may even strengthen this shift.  相似文献   

19.
Thomas A. Ebert 《Oecologia》1985,66(4):461-467
Summary Feeding relationships between roach and ide from two sites in a mesotrophic lake SE Norway are presented and discussed. When animal food supply was scarce, both fish species increased their consumption of macrophytes; roach sevenfold, and ide threefold. Along a typical littoral vegetation gradient, ide fed among helophytes, while roach fed in the zone outside. This different habitat selection was reflected in the most important plants consumed (ide: Equisetum fluviatile, roach: Characeae), and confirmed by gill net catches. During the vegetative season, roach avoided areas with dense vegetation. In shallow areas beyond the littoral, the most important food plant for both fish species was Potamogeton perfoliatus, which constituted 80% of the total food consumed (dry weight basis) in the roach and 35% in the ide. The diet shift to plants seemed to be strongly influenced by the supply of animal food and the intensity of intra-and interspecific competition.  相似文献   

20.
The effect of dietary composition (high-protein, high-carbohydrate and high-fat diets) and starvation on in totum gluconeogenesis from L-(U-14C)glutamate was studied in the rainbow trout. High-fat and high-carbohydrate diets produced a significant hyperglycaemia. Lower blood glucose values were obtained in trout fed on a high-protein diet. Liver glycogen levels were significantly lower in trout fed on carbohydrate-free diets (high-protein and high-fat diets) and in starved fish. Gluconeogenesis from L-(U-14C)glutamate was markedly reduced in fish given the high-carbohydrate diet and significantly enhanced in starved fish. Radioactive liver glycogen was higher in starved fish, although the amount of radioactivity incorporated into glycogen was very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号