首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of the fluorescent Ca2+ indicator dye fura-2 by intracellular constituents has been investigated by steady-state optical measurements. Fura-2's (a) fluorescence intensity, (b) fluorescence emission anisotropy, (c) fluorescence emission spectrum, and (d) absorbance spectra were measured in glass capillary tubes containing solutions of purified myoplasmic proteins; properties b and c were also measured in frog skeletal muscle fibers microinjected with fura-2. The results indicate that more than half, and possibly as much as 85%, of fura-2 molecules in myoplasm are in a protein-bound form, and that the binding changes many properties of the dye. For example, in vitro characterization of the Ca2+-dye reaction indicates that when fura-2 is bound to aldolase (a large and abundant myoplasmic protein), the dissociation constant of the dye for Ca2+ is three- to fourfold larger than that measured in the absence of protein. The problems raised by intracellular binding of fura-2 to cytoplasmic proteins may well apply to cells other than skeletal muscle fibers.  相似文献   

2.
Both intact and denatured preparations of myosin and actin from frog skeletal muscles produced in rabbits antisera containing antibodies against authentic myosin and actin, respectively, though being contaminated with antibodies against other proteins. Antigenicity of our frog myosin as revealed in agar diffusion tests was indistinguishable from that of cardiac muscle myosin from the same species. Similarly, skeletal muscle myosins from other amphibians shared to a certain extent immunological characteristics with our frog myosin, but those from avian and mammalian materials did not. Similarity in antigenicity was also demonstrated among our skeletal muscle actin, cardiac muscle actin from the same species and skeletal muscle actin from the other anurans studied. However, skeletal muscle actin from an urodele could not clearly be correlated in its immunological properties with our frog actin, and those from avian and mammalian materials were antigenically different from our frog actin. Thus, the degree of antigenic similarity of these muscle proteins seemed to be correlated with the phylogenic relationship of the animals so far studied. The results also indicated that our antisera could only be applied to immuno-cytological and immuno-embryological studies of myosin and actin when the antisera absorbed with the corresponding antigen preparations were used as negative controls.  相似文献   

3.
The spatial distribution of acid membrane organelles and their relationships with normal and vacuolated transverse tubules has been studied in living frog skeletal muscle fibres using confocal microscopy. Acridine orange (AO) was used to evaluate acid compartments, while a lipophilic styryl dye, RH 414, was employed to stain the membranes of the T-system. AO accumulated in numerous spherical granules located near the poles of nuclei and between myofibrils where they were arranged in short parallel rows, triplets or pairs. AO granules could be divided into three groups: green (monomeric AO), red (aggregated AO), and mixed green/red. As demonstrated by lambda-scanning, most granules were mixed. Double staining of muscle fibres with AO and RH 414 revealed almost all AO granules located near the transverse tubules. Vacuolation of the T-system was induced by glycerol loading and subsequent removal. The close juxtaposition of AO granules and the T-system was preserved in vacuolated fibres. The lumens of vacuoles did not accumulate AO. It is concluded that AO granules represent an accumulation of AO in lysosome-related organelles and fragmented Golgi apparatus and a possible functional role of the spatial distribution of such acidic compartments is discussed.  相似文献   

4.
B Vilsen  J P Andersen 《FEBS letters》1992,306(2-3):213-218
The cDNA encoding a Ca(2+)-transport ATPase of frog (Rana esculenta) skeletal muscle was isolated and characterized. The deduced amino acid sequence, consisting of 994 residues, showed 89% identity to the fast twitch muscle sarcoplasmic reticulum Ca(2+)-ATPases of chicken and rabbit. Northern blot analysis using a fragment of this cDNA as probe detected a 5.0 kb message in frog skeletal muscle but did not detect any mRNA encoding sarcoplasmic reticulum Ca(2+)-ATPase in frog cardiac muscle. The enzymatic properties of the amphibian skeletal muscle Ca(2+)-ATPase were compared with those of the rabbit fast twitch muscle Ca(2+)-ATPase by functional expression of the cDNAs in COS-1 cells. The amphibian Ca(2+)-ATPase displayed a reduced apparent affinity for Ca2+ and an increased apparent affinity for the inhibitors, vanadate and thapsigargin, relative to the mammalian enzyme. This may be explained by a mechanism in which relatively more of the E2 conformation accumulated in the frog Ca(2+)-ATPase than in the mammalian enzyme.  相似文献   

5.
On Western blots of skeletal muscle preparations of different vertebrate classes, four monoclonal anti-human type 1 porin antibodies recognize one single band of either 30.5 or 31 kDa, respectively. To confirm that it is eukaryotic porin which is labeled by the antibodies, we used a purification procedure developed for human type 1 porin for porins from skeletal muscle of shark, frog, and turkey. Applied to different mammalian species and tissues, this procedure exclusively provides type 1 porin. However, applied to shark skeletal muscle, it provides two porin isotypes in nearly equal amounts. In the case of frog skeletal muscle, the procedure provides mainly type 2 porin and a lower amount of type 1 porin. Applied to turkey skeletal muscle, the method provides exclusively type 2 porin. As demonstrated by two-dimensional Western blots, both shark and frog porin isotypes and the turkey type 2 porin are recognized by our antibodies. Furthermore, we elucidated the entire amino acid sequence of frog type 2 porin.  相似文献   

6.
From skeletal muscle myosin light chains readily dissociate from the myosin oligomer in the absence of divalent cations, and unlike rabbit skeletal muscle myosin light chains, the released light chains of frog skeletal muscle myosin have a high Ca2+ binding affinity. Whereas each Ca2+ binding light chain of frog skeletal muscle myosin, when in association with the heavy chains bound 1 mol of Ca2+, when in the dissociated state bound 0.5 mol of Ca2+; the latter were readily displaced with low Mg2+ concentrations. Whereas 10(-5) M Mg2+ displaced all of the Ca2+ binding sites on the released light chains at Ca2+ concentration ranges of 10(-7) to 10(-4) M, there was negligible displacement of the Ca2+ binding sites with native frog skeletal muscle myosin under these same conditions.  相似文献   

7.
1.--The tetraethylammonium (TEA) effects on K+ contracture and membrane depolarization are compared in both crab and frog skeletal muscle fibres. 2.--The mechanical tension of the contracture is reduced by the TEA in frog skeletal muscle fibre; it is increased in crab skeletal fibre. 3.--When no mechanical phenomenon is observed in frog skeletal muscle, the amplitude and the velocity of membrane depolarization induced by an increase of outward K+ concentration is reduced by the TEA. These effects are in opposition in crab muscle fibre. 4.--In crab muscle fibre, the results obtained tend to show that the C1-ions are not distributed on each side of the membrane according to Donnan equilibrium.  相似文献   

8.
The pharmacological properties of the superior oblique and the superior rectus muscles of the frog's eye were investigated in comparison with those of a skeletal muscle (iliofibularis muscle) of the same animal. Acetylcholine causes sustained contractures of the extraocular muscles; this effect is increased by physostigmine and decreased or abolished by d-tubocurarine. Also the applications of succinylcholine, choline or caffeine are able to evoke contractures. There are no striking differences in pharmacological properties between extraocular and skeletal muscles of the frog. The time-course of the contractures and the sensitivity of the muscle preparations to the drugs which evoke contractures are identical in extraocular and iliofibularis muscles. In comparison with skeletal muscles there is no higher sensitivity of the extraocular muscles against curare-like drugs. The existence of adrenergic receptors could not be found neither in extraocular nor in skeletal muscles of the frog. It is concluded that in frogs no pharmacological differences exist between the muscle fibre types which compose the extraocular and the skeletal muscles.  相似文献   

9.
Ruthenium-red staining of skeletal and cardiac muscles   总被引:1,自引:0,他引:1  
Summary The effects of ruthenium red (RR) on amphibian and mammalian skeletal muscles and mammalian myocardium were examined. In skeletal muscle cells, a discrete pattern of staining can be brought about within the lumina of the terminal cisternae (junctional sarcoplasmic reticulum [SR]) by sequential exposure to RR and OsO4. After prolonged immersion in RR solution, formation of pentalaminar segments (zippering) occurs at various points along the longitudinal (network) SR tubules. Zippering can be elicited in skeletal SR at any stage of preparation prior to postfixation with OsO4. By means of dispersive X-ray analysis, both ruthenium and osmium were seen to be deposited in skeletal muscle junctional SR, and ruthenium was detected in the myoplasm as well. In skeletal muscles whose T tubules were ruptured by exposure to glycerol, the pattern of SR staining and zippering resulting from ruthenium-osmium treatment was not affected. These findings indicate that RR is capable of passage across the sarcolemma of skeletal muscle and that this passage does not occur solely under conditions in which the plasma membrane is damaged. In contrast, RR does not opacify or modify any region of the SR of cardiac muscle. However, after this treatment, randomly distributed opaque bodies, composed of parallel lamellar structures, appear throughout the myocardial cells. A few of these bodies are associated with lipid droplets, but the rest are of unknown origin. The failure of the SR of cardiac muscle to stain after exposure to ruthenium dye (even though this material enters these cells) suggests that the chemical composition of cardiac SR is significantly different from that of skeletal muscle SR.Supported in part by PHS grant HL-11155 (to N.S.) and American Heart Grant-in-Aid 78-753 (to M.S.F.). The authors are grateful to Drs. David Harder and Lawrence Sellin for their assistance with the preparation of frog skeletal muscle, to Dr. S.K. Jirge for his helpful suggestions and discussions, and particularly to Dr. Kenneth R. Lawless and Ms. Ann Marshall of the Department of Materials Sciences, University of Virginia School of Engineering, and Col. John M. Brady of the United States Army Institute of Dental Research, Walter Reed Army Medical Center, for their help with, and for the use of, the X-ray analysis equipment  相似文献   

10.
Frogs submerged at 3 degrees C in hypoxic water (Po2=60 mmHg) depress their metabolic rate to 25% of that seen in control animals with access to air. The hypometabolic state of the skeletal muscle in such cold-submerged frogs is thought to be the most important contributor to the overall metabolic depression. The aim of this study was to determine whether the aerobic capacity of frog skeletal muscle became altered during 1-4 mo of hibernation to match the reduction in adenosine triphosphate (ATP) demand. To this end, the activities of key mitochondrial enzymes were measured in the skeletal muscle and in isolated mitochondria of frogs at different stages during hibernation. We also measured the activity of lactate dehydrogenase (LDH) as an indicator of glycolytic capacity. The activities of cytochrome c oxidase, citrate synthase, and LDH were significantly lower in frog skeletal muscle after 4 mo of hibernation compared with control conditions. The reduction in skeletal muscle aerobic capacity is apparently due to changes in the intrinsic properties of the mitochondria. Overall, these results indicate an important reorganisation of ATP-producing pathways during long-term metabolic depression to match the lowered ATP demand.  相似文献   

11.
Synopsis The Haematoxylin-Basic Fuchsin-picric acid (HBFP) stain, a new non-enzymatic histochemical technique described previously to detect early myocardial ischemia, was applied to skeletal muscle. Several factors were found which have an important effect on HBFP positivity including ageing in room air of unstained tissue sections, and the precise timing of the differentiation step of this stain. Using carefully standardized techniques, repeatable staining was obtained and a high level of inter-observer consistency in the interpretation of staining results was achieved. Although the technical requirements of this new stain are rigorous, it offers promise and deserves further evaluation in the study of skeletal as well as cardiac muscle disorders. The histological advantages include vivid contrasts and the ability to use the stain on formalin-fixed paraffin-embedded muscle tissue.  相似文献   

12.
The mechanical properties of two extraocular muscles (superior oblique and superior rectus muscles) of the frog were studied and compared with those of a frog's skeletal muscle (iliofibularis muscle) which contains the same types of muscle fibres as the oculorotatory muscles. The extraocular muscles are very fast twitching muscles. They exhibit a smaller contraction time, a smaller half-relaxation time, a higher fusion frequency, and a lower twitch-tetanus ratio than the skeletal muscles. The maximum isometric tetanic tension produced per unit cross-sectional area is lower in the extraocular muscles than in skeletal muscles. However, the extraocular muscles show a higher fatigue resistance than the skeletal muscles. With respect to the dynamic properties there are some differences between the various oculorotatory muscles of the frog. The superior rectus muscle exhibits a faster time-course of the contraction, a higher fusion frequency, and a higher fatigability than the superior oblique muscle. An increase of the extracellular K+-concentration evokes sustained contractures not only in the extraocular muscles but also in the iliofibularis muscle; between these muscles there are no striking differences in the mechanical threshold of the whole muscle preparation. The mechanical threshold depends on the Ca++-concentration of the bathing solution and it is found in a range between 12.5 and 17.5 mM K+ in a normal Ringer solution containing 1.8 mM Ca++. The static-mechanical properties of the extraocular muscles of the frog and the dependence of the active developed tension on the muscle extension are very similar to those which are known to exist in the extraocular muscles of other vertebrates. In tetanic activated frog's oculorotatory muscles a linear relationship exists between length and tension. A variation of the stimulation frequency does not change the slope of this curve but causes parallel shifts of the curve. The peculiar properties of the extraocular muscles of the frog are discussed with respect to the muscle fibre types in these muscles and to the diameter of the muscle fibres.  相似文献   

13.
14.
Contractile properties differ between skeletal, cardiac and smooth muscles as well as between various skeletal muscle fiber types. This functional diversity is thought to be mainly related to different speeds of myosin head pulling cycles, with the molecular mechanism of force generation being essentially the same. In this study, force-generating attachments of myosin heads were investigated by applying small perturbations of myosin head pulling cycles in stepwise stretch experiments on skeletal muscle fibers of different type. Slow fibers (frog tonic and rat slow-twitch) exhibited only a ‘slow-type’ of myosin head attachment over the entire activation range, while fast fibers (frog and rat fast-twitch) displayed a ‘slow-type’ of myosin head attachment at low levels of activation, and an up to 30-times faster type at high levels of activation. These observations indicate that there are qualitative differences between the mechanisms of myosin head attachment in slow and fast vertebrate skeletal muscle fibers.  相似文献   

15.
Skeletal or cardiac muscle fibers can be separated by brief (3-5 second) dissociation of formalin-fixed pieces with a Willems Polytron (Brinkmann Instrument Co.). Such separated fibers are useful for demonstration of abnormal accumulations of lipids, carbohydrates, proteins and minerals in metabolic diseases. Staining techniques for demonstration of various stored materials include: 1) toluidine blue at pH 2.8 for acid mucopolysaccharide in skeletal muscle fibers in Pompe's glycogenesis 2,2) one-step trichrome stain for nemaline myopathy and for abnormal mitochondria in X-linked infantile cardiomyopathy, 3) periodic acid-methenamine silver stain for glycolipid-containing lysosomes in I-cell disease (mucolipidosis 2), 4) Sudan black B stain for lipid in skeletal muscle fibers in Reye's syndrome, infantile lactic acidosis, Leigh's infantile subacute necrotizing encephalopathy and Jansky-Bielschowsky late infantile ceroid lipofuscinosis, 5) iron stain for iron in cardiac and skeletal muscle fibers in thalassemia with advanced hemosiderosis, and 6) autofluorescence for “ceroid” in skeletal muscle fibers in Jansky-Bielschowsky disease.  相似文献   

16.
Skeletal or cardiac muscle fibers can be separated by brief (3--5 second) dissociation of formalin-fixed pieces with a Willems Polytron (Brinkmann Instrument Co.). Such separated fibers are useful for demonstration of abnormal accumulations of lipids, carbohydrates, proteins and minerals in metabolic diseases. Staining techniques for demonstration of various stored materials include: 1) toluidine blue at pH 2.8 for acid mucopolysaccharide in skeletal muscle fibers in Pompe's glycogenesis 2, 2) one-step trichrome stain for nemaline myopathy and for abnormal mitochondria in X-linked infantile cardiomyopathy, 3) periodic acid-methenamine silver stain for glycolipid-containing lysosomes in I-cell disease (mucolipidosis 2), 4) Sudan black B stain for lipid in skeletal muscle fibers in Reye's syndrome, infantile lactic acidosis, Leigh's infantile subacute necrotizing encephalopathy and Jansky-Bielschowsky late infantile ceroid lipofuscinosis, 5) iron stain for iron in cardiac and skeletal muscle fibers in thalassemia with advanced hemosiderosis, and 6) autofluorescence for "ceroid" in skeletal muscle fibers in Jansky-Bielschowsky disease.  相似文献   

17.
BACKGROUND: The most comprehensive evaluation of vertebrate skeletal development involves the use of Alizarin Red S dye to stain ossified bone and various other dyes to stain cartilage. The dye used most widely to stain fetal cartilage in rodents and rabbits is Alcian Blue 8GX. However, the global supply of this specific dye has been exhausted. Several forms of the dye marketed as Alcian Blue 8GX are now available, although they are not synthesized via the original 8GX manufacturing process. METHODS: One new Alcian Blue 8GX form and two Alcian Blue dye variants were evaluated in rats and rabbits using standard staining procedures. The staining quality of these dyes were evaluated relative to the original form of Alcian Blue 8GX based on cartilage uptake of the dye, clarity of the cartilaginous components, staining intensity of the dye, and overall readability of the specimens under stereomicroscopic evaluation. RESULTS: Staining with the newer form of Alcian Blue 8GX resulted in poor staining quality. The Alcian Blue-Pyridine variant performed well, although staining intensity was less than optimal. The Alcian Blue-Tetrakis variant provided staining characteristics that were most similar to the original form of Alcian Blue 8GX. CONCLUSIONS: Alcian Blue-Tetrakis was markedly better in its ability to stain fetal cartilage than the newer form of Alcian Blue 8GX.  相似文献   

18.
19.
Frog ventricular cardiac muscle has structural features which set it apart from frog and mammalian skeletal muscle and mammalian cardiac muscle. In describing these differences, our attention focused chiefly on the distribution of cellular membranes. Abundant inter cellular clefts, the absence of tranverse tubules, and the paucity of sarcotubules, together with exceedingly small cell diameters (less than 5 µ), support the suggestion that the mechanism of excitation-contraction coupling differs in these muscle cells from that now thought to be characteristic of striated muscle such as skeletal muscle and mammalian cardiac muscle. These structural dissimilarities also imply that the mechanism of relaxation in frog ventricular muscle differs from that considered typical of other striated muscles. Additional ultrastructural features of frog ventricular heart muscle include spherical electron-opaque bodies on thin filaments, inconstantly present, forming a rank across the I band about 150 mµ from the Z line, and membrane-bounded dense granules resembling neurosecretory granules. The functional significance of these features is not yet clear.  相似文献   

20.
Pharmacological and kinetic properties of the inward rectifier potassium current Iir the frog embryonic skeletal myocytes were found to be identical to those of adult frog skeletal muscle fibres. The data obtained suggest that the Iir plays the main role in maintaining the myocytes resting membrane potential (RMP) when chloride conductance is insignificant. Changes of the integral conductance Gir and the RMP values correlated with the T-system development. The inward rectifier K+ channels, from the early stages of the muscle seem to be located in the T-tubule membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号