首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moderate alcohol consumption has been shown to reduce the morbidity and mortality from coronary heart disease. Ethanol elicits its protective effects via mechanisms that include activation of protein kinases linked to growth and survival. Our results in isolated neonatal rat cardiomyocytes demonstrate that repeated short-term, low-dose exposure to ethanol is sufficient to activate the growth and/or survival pathways that involve PKC-epsilon, Akt, and AMP-activated kinase. In addition, we are able to induce apoptosis in these cardiomyocytes using the saturated fatty acid palmitate. Pretreatment with multiple low-dose ethanol exposures attenuates the apoptotic response to palmitate. This protection is manifested by a reduction in caspase-3-like activity, decreased mitochondrial loss of cytochrome c, and decreased loss of the mitochondrial lipid cardiolipin. We previously reported that incubation of cardiomyocytes with palmitate results in decreased production of reactive oxygen species compared with cells incubated with the nonapoptotic fatty acid oleate. In the present study, we observed an increase in the production of superoxide and the rates of fatty acid oxidation in cardiomyocytes pretreated with ethanol and then exposed to fatty acids. The level of superoxide production in palmitate-treated cells returns to the levels observed in oleate-treated cells after ethanol exposure. Taken together with our observed increase in AMP-activated kinase activity, we propose that ethanol pretreatments stimulate oxidative metabolism and electron transport within cardiomyocytes. We postulate that stimulation of palmitate metabolism may protect cardiomyocytes by preventing accumulation of unsaturated precursor molecules of cardiolipin synthesis. Maintaining cardiolipin levels may be sufficient to prevent the mitochondrial loss of cytochrome c and the downstream activation of caspases.  相似文献   

2.
Apoptosis has been identified recently as a component of many cardiac pathologies. However, the potential triggers of programmed cell death in the heart and the involvement of specific metabolic pathway(s) are less well characterized. Detachment of cytochrome c from the mitochondrial inner membrane is a necessary first step for cytochrome c release into the cytosol and initiation of apoptosis. The saturated long chain fatty acid, palmitate, induces apoptosis in rat neonatal cardiomyocytes and diminishes content of the mitochondrial anionic phospholipid, cardiolipin. These changes are accompanied by 1) acyl chain saturation of phosphatidic acid and phosphatidylglycerol, 2) large increases in the levels of these two phospholipids, and 3) a decline in cardiolipin synthesis. Although cardiolipin synthase activity is unchanged, saturated phosphatidylglycerol is a poor substrate for this enzyme. Under these conditions, decreased cardiolipin synthesis and release of cytochrome c are directly and significantly correlated. The results suggest that phosphatidylglycerol saturation and subsequent decreases in cardiolipin affect the association of cytochrome c with the inner mitochondrial membrane, directly influencing the pathway to cytochrome c release and subsequent apoptosis.  相似文献   

3.
Arachidonic acid and, to a smaller extent, oleic acid at micromolar concentrations decreased the mitochondrial membrane potential within AS-30D rat hepatoma cells cultivated in vitro and increased cell respiration. The uncoupling effect of both fatty acids on cell respiration was partly prevented by cyclosporin A, blocker of the mitochondrial permeability transition pore. Arachidonic acid increased the rate of reactive oxygen species (ROS) production, while oleic acid decreased it. Both fatty acids induced apoptotic cell death of AS-30D cells, accompanied by the release of cytochrome c from mitochondria to the cytosol, activation of caspase-3 and association of proapoptotic Bax protein with mitochondria; arachidonic acid being a more potent inducer than oleic acid. Trolox, a potent antioxidant, prevented ROS increase induced by arachidonic acid and protected the cells against apoptosis produced by this fatty acid. It is concluded that arachidonic and oleic acids induce apoptosis of AS-30D hepatoma cells by the mitochondrial pathway but differ in the mechanism of their action: Arachidonic acid induces apoptosis mainly by stimulating ROS production, whereas oleic acid may contribute to programmed cell death by activation of the mitochondrial permeability transition pore.  相似文献   

4.
Evidence suggests that oxidation of LDL is involved in the progression of atherosclerosis by inducing apoptosis in macrophages. Polyunsaturated fatty acids (PUFAs) are prominent components of LDL and are highly peroxidisable. We therefore tested PUFAs for induction of apoptosis in human monocyte-macrophages in vitro. Arachidonic acid (AA) induced the highest levels of apoptosis followed by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), despite DHA and EPA being more peroxidisable than AA. alpha-Linolenic acid induced lower levels of apoptosis. Linoleic and oleic acids were innocuous. Results of experiments with AA products and enzyme inhibitors suggest roles for peroxidation, cyclooxygenase and lipoxygenase in AA-induced apoptosis. Our results further suggest activation of PPARgamma by AA and DHA associated with apoptosis induction. These findings may be relevant to potential mechanisms of fatty acid influences on plaques and may suggest strategies for combating atherosclerosis progression.  相似文献   

5.
The polyunsaturated fatty acids gamma-linolenic acid (GLA) and eicosapentaenoic acid (EPA) are cytotoxic to tumour cells. GLA inhibits Walker 256 tumour growth in vivo, causing alterations in mitochondrial ultrastructure and cellular metabolism. The objective of the present study was to investigate the mechanisms behind fatty acid inhibition of Walker 256 tumour growth under controlled in vitro conditions. At a concentration of 150 microM, both GLA and EPA caused a decrease in cell proliferation and an increase in apoptotic index. Increases in reactive oxygen species (ROS) and lipid peroxide production were identified, as well as alterations in energy metabolism and the deposition of large amounts of triacylglycerol in the form of lipid droplets. Mitochondrial respiratory chain complexes I+III and IV had significantly decreased activity and mitochondrial membrane potential was greatly diminished. Intracellular ATP concentrations were maintained at 70-80% of control values despite the decreased mitochondrial function, which may be in part due to increased utilisation of glucose for ATP generation. Cytochrome c release from mitochondria was found, as was caspase-3-like activation. DNA fragmentation in situ revealed many apoptotic events within the cell population. The mechanism(s) by which ROS and lipid peroxides induce apoptosis remains unclear, but the effects of GLA and EPA appear to involve the mitochondrial pathway of apoptosis induction leading to cytochrome c release, caspase activation, loss of mitochondrial membrane potential and DNA fragmentation.  相似文献   

6.
Although previous studies demonstrated that genistein-induced apoptosis of various cell types including RPE-J cells, the involvement of mitochondrial events in such types of apoptosis has not been demonstrated to date. In this investigation of genistein-induced apoptosis of RPE-J cells, genistein induced the reduction of the mitochondrial membrane potential and the release of cytochrome c to cytosol. A mitochondrial permeability transition pore (PTP) blocker bongkrekic acid prevented the reduction of the mitochondrial membrane potential and cytochrome c release, and consequently abolished caspase-3 activation, nuclear condensation, and DNA fragmentation. On the other hand, zVAD-fmk did not inhibit the mitochondrial event such as the reduction of the mitochondrial membrane potential and cytochrome c release although it prevented caspase-3 activation, nuclear condensation, and DNA fragmentation. Taken together, genistein induces apoptosis of RPE-J cells by opening the mitochondrial PTP, and the mitochondrial event in this type of apoptosis is caused independently of caspase.  相似文献   

7.
We have recently shown that nitric-oxide (NO)-induced apoptosis in Jurkat human leukemia cells requires degradation of mitochondria phospholipid cardiolipin, cytochrome c release, and activation of caspase-9 and caspase-3. Moreover, an inhibitor of lipid peroxidation, Trolox, suppressed apoptosis in Jurkat cells induced by NO donor glycerol trinitrate. Here we demonstrate that this antiapoptotic effect of Trolox occurred despite massive release of the mitochondrial protein cytochrome c into the cytosol and mitochondrial damage. Incubation with Trolox caused a profound reduction of intracellular ATP concentration in Jurkat cells treated by NO. Trolox prevented cardiolipin degradation and caused its accumulation in Jurkat cells. Furthermore, Trolox markedly downregulated the NO-mediated activation of caspase-9 and caspase-3. Caspase-9 is known to be activated by released cytochrome c and together with caspase-3 is considered the most proximal to mitochondria. Our results suggest that the targets of the antiapoptotic effect of Trolox are located downstream of the mitochondria and that caspase activation and subsequent apoptosis could be blocked even in the presence of cytochrome c released from the mitochondria.  相似文献   

8.
We examined the effects of arachidonic acid (AA), eicosapentaenoic acid (EPA), and their ultraviolet (UV)-irradiated products on HL-60 cells and isolated mitochondria to explore the following four obscure points in the mechanism of polyunsaturated fatty acids (PUFAs)-induced apoptosis: (i). the role of reactive oxygen species, (ii). the interaction of PUFAs and their metabolites with mitochondria in situ, (iii). the cyclosporine A (CsA)-sensitivity in PUFA-induced membrane permeability transition, (iv). the specificity of oxidized n-3 PUFAs in the induction of apoptosis in cancer cells. UV-oxidized PUFAs contained conjugated dienes and thiobarbituric acid reactive substances (TBARS). The apoptotic effects of PUFAs on HL-60 cells were increased by UV-irradiation whereas the swelling effect of PUFAs on isolated mitochondria was decreased. Both oxidized n-3 and n-6 PUFAs induced increased depolarization, ferricytochrome c release, the activation of various caspases, and DNA-fragmentation in a CsA-insensitive mechanism concomitant with a slight increase in the value of TBARS in cells. Furthermore, there were no significant differences in the mechanism of apoptosis induced by either oxidized AA or oxidized EPA. On the basis of these results, it was concluded that both oxidized n-3 or n-6 PUFAs induced apoptosis in HL-60 cells by a similar mechanism in a CsA-insensitive manner and also that oxidized products of PUFAs, but not the cellular oxidation process itself, play an important role in the mechanism of apoptosis in HL-60 cells.  相似文献   

9.
Little is known about the biochemical basis of the action of free fatty acids (FFA) on breast cancer cell proliferation and apoptosis. Here we report that unsaturated FFAs stimulated the proliferation of human MDA-MB-231 breast cancer cells, whereas saturated FFAs inhibited it and caused apoptosis. Saturated FFA palmitate decreased the mitochondrial membrane potential and caused cytochrome c release. Palmitate-induced apoptosis was enhanced by the fat oxidation inhibitor etomoxir, whereas it was reduced by fatty-acyl CoA synthase inhibitor triacsin C. The non-metabolizable analog 2-bromopalmitate was not cytotoxic. This indicates that palmitate must be metabolized to exert its toxic effect but that its action does not involve fat oxidation. Pharmacological studies showed that the action of palmitate is not mediated via ceramides, reactive oxygen species, or changes in phosphatidylinositol 3-kinase activity. Palmitate caused early enhancement of cardiolipin turnover and decreased the levels of this mitochondrial phospholipid, which is necessary for cytochrome c retention. Cosupplementation of oleate, or increasing beta-oxidation with the AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside, both restored cardiolipin levels and blocked palmitate-induced apoptosis. Oleate was preferentially metabolized to triglycerides, and oleate cosupplementation channeled palmitate esterification processes to triglycerides. Overexpression of Bcl-2 family members blocked palmitate-induced apoptosis. The results provide evidence that a decrease in cardiolipin levels and altered mitochondrial function are involved in palmitate-induced breast cancer cell death. They also suggest that the antiapoptotic action of oleate on palmitate-induced cell death involves both restoration of cardiolipin levels and redirection of palmitate esterification processes to triglycerides.  相似文献   

10.
We have recently shown that nitric-oxide (NO)-induced apoptosis in Jurkat human leukemia cells requires degradation of mitochondria phospholipid cardiolipin, cytochrome c release, and activation of caspase-9 and caspase-3. Moreover, an inhibitor of lipid peroxidation, Trolox, suppressed apoptosis in Jurkat cells induced by NO donor glycerol trinitrate. Here we demonstrate that this antiapoptotic effect of Trolox occurred despite massive release of the mitochondrial protein cytochrome c into the cytosol and mitochondrial damage. Incubation with Trolox caused a profound reduction of intracellular ATP concentration in Jurkat cells treated by NO. Trolox prevented cardiolipin degradation and caused its accumulation in Jurkat cells. Furthermore, Trolox markedly downregulated the NO-mediated activation of caspase-9 and caspase-3. Caspase-9 is known to be activated by released cytochrome c and together with caspase-3 is considered the most proximal to mitochondria. Our results suggest that the targets of the antiapoptotic effect of Trolox are located downstream of the mitochondria and that caspase activation and subsequent apoptosis could be blocked even in the presence of cytochrome c released from the mitochondria.  相似文献   

11.
Hypoxia and hypoxia-reperfusion (H-R) play important roles in human pathophysiology because they occur in clinical conditions such as circulatory shock, myocardial ischemia, stroke, and organ transplantation. Reintroduction of oxygen to hypoxic cells during reperfusion causes an increase in generation of reactive oxygen species (ROS), which can alter cell signaling, and cause damage to lipids, proteins, and DNA leading to ischemia-reperfusion injury. Since vitamin C is a potent antioxidant and quenches ROS, we investigated the role of intracellular ascorbic acid (iAA) in endothelial cells undergoing hypoxia-reperfusion. Intracellular AA protected human endothelial cells from H-R-induced apoptosis. Intracellular AA also prevents loss of mitochondrial membrane potential and the release of cytochrome C and activation of caspase-9 and caspase-3 during H-R. Additionally, inhibition of caspase-9 activation prevented H-R-induced apoptosis, suggesting a mitochondrial site of initiation of apoptosis. We found that H-R induced an increase in ROS in endothelial cells that was abrogated in the presence of iAA. Our results indicate that vitamin C prevents hypoxia and H-R-induced damage to human endothelium.  相似文献   

12.
多不饱和脂肪酸对成年雪貂心肌钾通道的作用   总被引:7,自引:0,他引:7  
Xiao YF  Morgan JP  Leaf A 《生理学报》2002,54(4):271-281
本研究是在成年雪貂的心肌上研究多不饱和脂肪酸(PUFA)对电压门控钾通道的效应。我们观察到,n-3 PUFA能抑制短时性外向钾电流(Ito)和延迟整流钾电流(IK),而对内向整流钾电流(IK1)则没有明显影响。二十二碳六烯酸(DHA)对Ito和Ik能产生浓度依赖性的抑制作用,其IC50分别为7.5和20μmol/L,但不影响IK1。二十碳五烯酸(EPA)对这三种钾通道的作用与DHA相似。花生四烯酸(5或10μmol/L)先引起IK的抑制,然后引起IK,AA的激活;用环氧合酶抑制剂消炎痛可以阻断花生四烯酸激活IK,AA的作用。不具有抗心律失常作用的单不饱和脂肪酸和饱和脂肪酸都不明显影响这些钾通道的活性。上述实验结果证明,n-3 PUFA能抑制心肌细胞的Ito和IK,但和我们以前报道的PUFA对心肌钠电流和钙电流的作用相比,其对Ito和IK抑制作用的效能较低。n-3 PUFA的抗心律失常效应可能与它们抑制心肌钠、钙、钾通道的作用有关。  相似文献   

13.
Polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) have been shown to modulate a number of inflammatory disorders. Mast cells play a critical role in the initiation and maintenance of inflammatory responses. However, the effects of PUFAs on mast cell functions have not been fully addressed. We here-in examined the effects of PUFAs on the high affinity IgE receptor (FcepsilonRI)-mediated mast cell activation using RBL-2H3 cells, a rat mast cell line, that were cultured in the medium containing palmitic acid (PA), AA, or the AA analogs mead acid (MA) and eicosapentaenoic acid (EPA). In AA-supplemented cells, the FcepsilonRI-mediated beta-hexosamidase and TNF-alpha release, calcium (Ca(2+)) influx, and some protein tyrosine phosphorylations including Syk and linker for activation of T cells (LAT) were enhanced, whereas, in MA- or PA-supplemented cells, they were not changed when compared with cells cultured in control medium. In EPA-supplemented cells, the enhancements of beta-hexosamidase release and protein tyrosine phosphorylations were observed. Furthermore, in AA- or EPA-supplemented cells, FcepsilonRI-mediated intracellular production of reactive oxygen species (ROS) that is required for the tyrosine phosphorylation of LAT and Ca(2+) influx were enhanced when compared with the other cells. Thus, preincubation of AA or EPA augmented FcepsilonRI-mediated degranulation in mast cells by affecting early events of FcepsilonRI signal transduction, which might be associated with the change of fatty acid composition of the cell membrane and enhanced production of ROS. The results suggest that some PUFAs can modulate FcepsilonRI-mediated mast cell activation and might affect FcepsilonRI/mast cell-mediated inflammation, such as allergic reaction.  相似文献   

14.
A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (− 28% for 70 μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages.  相似文献   

15.
16.
Palmitic acid (Pal) is known to promote apoptosis (Sparagna G et al (2000) Am J Physiol Heart Circ Physiol 279: H2124–H2132) and its amount in blood and mitochondria increases under some pathological conditions. Yet, the mechanism of the proapoptotic action of Pal has not been elucidated. We present evidence for the involvement of the mitochondrial cyclosporin A-insensitive pore induced by Pal/Ca2+ complexes in the apoptotic process. Opening of this pore led to a fall of the mitochondrial membrane potential and the release of the proapoptotic signal cytochrome c. The addition of cytochrome c prevented these effects and recovered membrane potential, which is in contrast to the cyclosporin A-sensitive mitochondrial permeability transition pore. Oleic and linoleic acids prevented the Pal/Ca2+-induced pore opening in the intact mitochondria, this directly and significantly correlating with the effect of these fatty acids on Pal-induced apoptosis in cells (Hardy S et al (2003) J Biol Chem 278: 31861–31870). The specific probe for cardiolipin, 10-N-nonyl acridine orange, inhibited formation of this pore.  相似文献   

17.
Cardiomyocyte apoptosis contributes to cell death during myocardial infarction. One of the factors that regulate the degree of apoptosis during ischemia is the amino acid taurine. To study the mechanism underlying the beneficial effect of taurine, we examined the interaction between taurine and mitochondria-mediated apoptosis using a simulated ischemia model with cultured rat neonatal cardiomyocytes sealed in closed flasks. Exposure to medium containing 20 mM taurine reduced the degree of apoptosis following periods of ischemia varying from 24 to 72 h. In the untreated group, simulated ischemia for 24 h led to mitochondrial depolarization accompanied by cytochrome c release. The apoptotic cascade was also activated, as evidenced by the activation of caspase-9 and -3. Taurine treatment had no effect on mitochondrial membrane potential and cytochrome c release; however, it inhibited ischemia-induced cleavage of caspase-9 and -3. Taurine loading also suppressed the formation of the Apaf-1/caspase-9 apoptosome and the interaction of caspase-9 with Apaf-1. These findings demonstrate that taurine effectively prevents myocardial ischemia-induced apoptosis by inhibiting the assembly of the Apaf-1/caspase-9 apoptosome. ischemia; cultured cardiomyocytes  相似文献   

18.

Background

In type 2 diabetes, free fatty acids (FFA) accumulate in microvascular cells, but the phenotypic consequences of FFA accumulation in the microvasculature are incompletely understood. Here we investigated whether saturated FFA induce apoptosis in human microvascular mesangial cells and analyzed the signaling pathways involved.

Methods

Saturated and unsaturated FFA-albumin complexes were added to cultured human mesangial cells, after which the number of apoptotic cells were quantified and the signal transduction pathways involved were delineated.

Results

The saturated FFA palmitate and stearate were apoptotic unlike equivalent concentrations of the unsaturated FFA oleate and linoleate. Palmitate-induced apoptosis was potentiated by etomoxir, an inhibitor of mitochondrial β-oxidation, but was prevented by an activator of AMP-kinase, which increases fatty acid β-oxidation. Palmitate stimulated an intrinsic pathway of pro-apoptotic signaling as evidenced by increased mitochondrial release of cytochrome-c and activation of caspase 9. A caspase 9-selective inhibitor blocked caspase 3 activation but incompletely blocked apoptosis in response to palmitate, suggesting an additional caspase 9-independent pathway. Palmitate stimulated mitochondrial release of endonuclease G by a caspase 9-independent mechanism, thereby implicating endonuclease G in caspase 9-indpendent regulation of apoptosis by saturated FFA. We also observed that the unsaturated FFA oleate and linoleate prevented palmitate-induced mitochondrial release of both cytochrome-c and endonuclease G, which resulted in complete protection from palmitate-induced apoptosis.

Conclusions

Taken together, these results demonstrate that palmitate stimulates apoptosis by evoking an intrinsic pathway of proapoptotic signaling and identify mitochondrial release of endonuclease G as a key step in proapoptotic signaling by saturated FFA and in the anti-apoptotic actions of unsaturated FFA.  相似文献   

19.
Polyunsaturated fatty acids (PUFAs) and their metabolites can modulate several biochemical processes in the cell and thus prevent various diseases. PUFAs have a number of cellular targets, including membrane proteins. They can interact with plasma membrane and intracellular potassium channels. The goal of this work was to verify the interaction between PUFAs and the most common and intensively studied mitochondrial large conductance Ca2+-regulated potassium channel (mitoBKCa). For this purpose human astrocytoma U87 MG cell lines were investigated using a patch-clamp technique. We analyzed the effects of arachidonic acid (AA); eicosatetraynoic acid (ETYA), which is a non-metabolizable analog of AA; docosahexaenoic acid (DHA); and eicosapentaenoic acid (EPA). The open probability (Po) of the channel did not change significantly after application of 10 μM ETYA. Po increased, however, after adding 10 μM AA. The application of 30 μM DHA or 10 μM EPA also increased the Po of the channel. Additionally, the number of open channels in the patch increased in the presence of 30 μM EPA. Collectively, our results indicate that PUFAs regulate the BKCa channel from the inner mitochondrial membrane.  相似文献   

20.
Polyunsaturated fatty acids (PUFAs) are known to inhibit cell proliferation of many tumour types both in vitro and in vivo. Their capacity to interfere with cell proliferation has been linked to their induction of reactive oxygen species (ROS) production in tumour tissues leading to cell death through apoptosis. However, the exact mechanisms of action of PUFAs are far from clear, particularly in brain tumours. The loss of bound hexokinase from the mitochondrial voltage-dependent anion channel has been directly related to loss of protection from apoptosis, and PUFAs can induce this loss of bound hexokinase in tumour cells. Tumour cells overexpressing Akt activity, including gliomas, are sensitised to ROS damage by the Akt protein and may be good targets for chemotherapeutic agents, which produce ROS, such as PUFAs. Cardiolipin peroxidation may be an initial event in the release of cytochrome c from the mitochondria, and enriching cardiolipin with PUFA acyl chains may lead to increased peroxidation and therefore an increase in apoptosis. A better understanding of the metabolism of fatty acids and eicosanoids in primary brain tumours such as gliomas and their influence on energy balance will be fundamental to the possible targeting of mitochondria in tumour treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号