首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Background: Oncogenes are the genes that have the potential to induce cancer. The extent and origin of codon usage bias is an important indicator of the forces shaping genome evolution in living organisms. Results: We observed moderate correlations between gene expression as measured by CAI and GC content at any codon site. The findings of our results showed that there is a significant positive correlation (Spearman''s r= 0.45, P<0.01) between GC content at first and second codon position with that of third codon position. Further, striking negative correlation (r = -0.771, P < 0.01) between ENC with the GC3s values of each gene and positive correlation (r=0.644, P<0.01) in between CAI and ENC was also observed. Conclusions: The mutation pressure is the major determining factor in shaping the codon usage pattern of oncogenes rather than natural selection since its effects are present at all codon positions. The results revealed that codon usage bias determines the level of oncogene expression in human. Highly expressed oncogenes had rich GC contents with high degree of codon usage bias.  相似文献   

3.
Selection Conflicts,Gene Expression,and Codon Usage Trends in Yeast   总被引:9,自引:0,他引:9  
Synonymous codon usage in yeast appears to be influenced by natural selection on gene expression, as well as regional variation in compositional bias. Because of the large number of potential targets of selection (i.e., most of the codons in the genome) and presumed small selection coefficients, codon usage is an excellent model for studying factors that limit the effectiveness of selection. We use factor analysis to identify major trends in codon usage for 5836 genes in Saccharomyces cerevisiae. The primary factor is strongly correlated with gene expression, consistent with the model that a subset of codons allows for more efficient translation. The secondary factor is very strongly correlated with third codon position GC content and probably reflects regional variation in compositional bias. We find that preferred codon usage decreases in the face of three potential limitations on the effectiveness of selection: reduced recombination rate, increased gene length, and reduced intergenic spacing. All three patterns are consistent with the Hill–Robertson effect (reduced effectiveness of selection among linked targets). A reduction in gene expression in closely spaced genes may also reflect selection conflicts due to antagonistic pleiotropy.  相似文献   

4.
利用异源表达系统生产重组蛋白已成为现代基因工程和生物工程研究热点和重点。但是研究者发现并非所有的基因都能在异源宿主中高效表达,除了宿主、分泌途径、启动子等因素外,基因自身的序列也蕴含了多种影响蛋白表达的因素,如密码子偏爱性,密码子对偏爱性,GC含量,mRNA二级结构,mRNA稳定性等。从基因设计的角度对影响蛋白表达的因素和方法进行了综述,尤其是对密码子优化和密码子对优化,详细讨论了与传统基因优化理念截然不同的密码子协调化及密码子对协调化等最新进展。  相似文献   

5.
The efficiency of gene expression in all organisms depends on the nucleotide composition of the coding region. GC content and codon usage are the two key sequence features known to influence gene expression, but the underlying molecular mechanisms are not entirely clear. Here we have determined the relative contributions of GC content and codon usage to the efficiency of nuclear gene expression in the unicellular green alga Chlamydomonas reinhardtii. By comparing gene variants that encode an identical amino acid sequence but differ in their GC content and/or codon usage, we show that codon usage is the key factor determining translational efficiency and, surprisingly, also mRNA stability. By contrast, unfavorable GC content affects gene expression at the level of the chromatin structure by triggering heterochromatinization. We further show that mutant algal strains that permit high‐level transgene expression are less susceptible to epigenetic transgene suppression and do not establish a repressive chromatin structure at the transgenic locus. Our data disentangle the relationship between GC content and codon usage, and suggest simple strategies to overcome the transgene expression problem in Chlamydomonas.  相似文献   

6.
Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.  相似文献   

7.
Veitia RA 《Genomics》2004,83(3):502-507
A compositional analysis of a sample of 50 zebrafish proteins containing at least one alanine run and of their open reading frames (ORFs) has been performed. The sample of poly(Ala) proteins showed a tendency to have runs of other amino acids (His/H, Gln/Q, Ser/S, Pro/P). Their ORFs and the first and second codon positions had higher GC contents than a reference gene set. The "universal" correlation between the GC content of the first+second and third codon positions (GC1+2 vs GC3) does not hold, but I provide an explanation in terms of genomic heterogeneity. Significant correlation between AHQS content and GC3 was obtained, reflecting codon bias favoring G/C at the third codon position of these amino acids. A correspondence analysis (COA) of relative synonymous codon usage showed that the poly(Ala) proteins have a biased distribution according to the second axis of the COA, which correlates with gene expression in zebrafish. A comparison with human is undertaken.  相似文献   

8.
It is well known that stop codons play a critical role in the process of protein synthesis. However, little effort has been made to investigate whether stop codon usage exhibits biases, such as widely seen for synonymous codon usage. Here we systematically investigate stop codon usage bias in various eukaryotes as well as its relationships with its context, GC3 content, gene expression level, and secondary structure. The results show that there is a strong bias for stop codon usage in different eukaryotes, i.e., UAA is overrepresented in the lower eukaryotes, UGA is overrepresented in the higher eukaryotes, and UAG is least used in all eukaryotes. Different conserved patterns for each stop codon in different eukaryotic classes are found based on information content and logo analysis. GC3 contents increase with increasing complexity of organisms. Secondary structure prediction revealed that UAA is generally associated with loop structures, whereas UGA is more uniformly present in loop and stem structures, i.e., UGA is less biased toward having a particular structure. The stop codon usage bias, however, shows no significant relationship with GC3 content and gene expression level in individual eukaryotes. The results indicate that genomic complexity and GC3 content might contribute to stop codon usage bias in different eukaryotes. Our results indicate that stop codons, like synonymous codons, exhibit biases in usage. Additional work will be needed to understand the causes of these biases and their relationship to the mechanism of protein termination. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

9.
Codon usage in Clonorchis sinensis was analyzed using 12,515 codons from 38 coding sequences. Total GC content was 49.83%, and GC1, GC2 and GC3 contents were 56.32%, 43.15% and 50.00%, respectively. The effective number of codons converged at 51-53 codons. When plotted against total GC content or GC3, codon usage was distributed in relation to GC3 biases. Relative synonymous codon usage for each codon revealed a single major trend, which was highly correlated with GC content at the third position when codons began with A or U at the first two positions. In codons beginning with G or C base at the first two positions, the G or C base rarely occurred at the third position. These results suggest that codon usage is shaped by a bias towards G or C at the third base, and that this is affected by the first and second bases.  相似文献   

10.
葡萄基因组密码子使用偏好模式研究   总被引:2,自引:0,他引:2  
根据完整基因组序列,运用多元统计分析和对应分析的方法,探讨了葡萄全基因组序列密码子的使用模式和影响密码子使用的各种可能因素。结果显示:葡萄密码子偏好性主要受到碱基差异(r=0.925)和自然选择(r=0.193)共同作用的影响,突变压力占了主导因素,自然选择的作用较小。同时基因长度和蛋白质疏水性也对密码子的偏好性有所影响。确定了葡萄的20个最优密码子。  相似文献   

11.
It is important and meaningful to understand the codon usage pattern and the factors that shape codon usage of maize. In this study, trends in synonymous codon usage in maize have been firstly examined through the multivariate statistical analysis on 7402 cDNA sequences. The results showed that the genes positions on the primary axis were strongly negatively correlated with GC3s, GC content of individual gene and gene expression level assessed by the codon adaptation index (CAI) values, which indicated that nucleotide composition and gene expression level were the main factors in shaping the codon usage of maize, and the variation in codon usage among genes may be due to mutational bias at the DNA level and natural selection acting at the level of mRNA translation. At the same time, CDS length and the hydrophobicity of each protein were, respectively, significantly correlated with the genes locations on the primary axis, GC3s and CAI values. We infer that genes length and the hydrophobicity of the encoded protein may play minor role in shaping codon usage bias. Additional 28 codons ending with a G or C base have been defined as “optimal codons”, which may provide useful information for maize gene-transformation and gene prediction.  相似文献   

12.
从GenBank获得大肠杆菌K-12MG1655株的全基因组序列,计算了与基因密码子偏好性相关的多个参数(Nc、CAI、GC、GC3s),对其mRNA编码区长度、形成二级结构倾向与密码子偏好性之间的关系进行了统计学分析,发现虽然翻译效率(包括翻译速度和翻译精度)是制约大肠杆菌高表达基因的密码子偏好性的主要因素,同时,mRNA编码区长度及其形成二级结构的倾向也是形成这种偏好性的不可忽略的原因,而且对偏好性有一定程度的削弱。另外对mRNA编码区形成二级结构倾向的生物学意义进行了讨论分析。  相似文献   

13.
In some Drosophila species, there are two types of greatly diverged amylase (Amy) genes (Amy clusters 1 and 2), each encoding active amylase isozymes. Cluster 1 is located at the middle of its chromosomal arm, and the region has a normal local recombination rate. However, cluster 2 is near the centromere, and this region is known to have a reduced recombination rate. Although nonsynonymous substitutions follow a molecular clock, synonymous substitutions were accelerated in cluster 2 after gene duplications. This resulted in a higher GC content at the third codon position (GC3) and codon usage bias in cluster 1, and lower GC3 content and codon usage bias in the cluster 2. However, no systematic difference in GC content was observed in the first and second codon positions or the 3'-flanking regions. Therefore, differences in local recombination rate rather than mutation bias might explain the divergence at synonymous sites between the two Amy clusters within species (Hill-Robertson effect). Alternatively, the different patterns and levels of expression between the two clusters may imply that the reduced expression level in cluster 2 caused by chromatin potentiation decreased the codon bias. Both of these hypotheses imply the importance of the genomic background as a driving force of divergence between non-tandemly duplicated genes.  相似文献   

14.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

15.
Jia M  Li Y 《FEBS letters》2005,579(24):5333-5337
Taking advantage of microarray data in Escherichia coli genome, the relationship among mRNA expression levels, folding free energy and codon usage bias are investigated. Our results indicate that mRNA expression is correlated to the stability of mRNA secondary structure and the codon usage bias. The decrease of the stability of mRNA structure contributes to the increase of mRNA expression. There is a negative correlation between codon adaptation index (CAI) and mRNA expression in genes with less stable structure. The relationship between the stability of mRNA structure and mRNA half-life indicates the stability of mRNA structure is different from mRNA half-life.  相似文献   

16.
Codon usage analysis has been a classical area of study for decades and is important for evolution, mRNA translation, and new gene discovery. Recently, genome sequencing has made it possible to perform studies of the entire genome in plant kingdoms. The base composition of the coding sequence, codon usage pattern, codon pairs, and related indicators of relative synonymous codon usage (RSCU), including the Fop, Nc, RSCU, CAI and GC contents, were analyzed. We found that the GC content of single-celled algae is the highest, whereas dicotyledons are the lowest. Moreover, the base composition of plants is similar within the same family. In addition, the GC content of the second base of the codon is lower than the first and third base. In conclusion, the codon usage characteristics are opposite in Gramineae, single-celled algae, fern and dicotyledon, moss, and Pinaceae. Furthermore, the degree of codon usage bias is decreasing with evolution. Therefore, we hypothesize that the lower the plants, the more that they must optimize codons and that higher plants no longer need to optimize codons.  相似文献   

17.
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance.  相似文献   

18.
Liu Q  Feng Y  Xue Q 《Mitochondrion》2004,4(4):313-320
In this paper, the main factors shaping codon usage in the mitochondrion genome of rice were reported. Correspondence analysis, a commonly used multivariate statistical approach, was carried out to analyze synonymous codon usage bias. The results showed that the main trend was strongly correlated with the gene expression level assessed by the 'Codon Adaptation Index' value, a result that was confirmed by the distribution of genes along the first axis. From the results that there were two significant correlations between axis 1 coordinates and the GC, GC3s content at silent sites of each sequence, and clearly significant correlations between the 'Effective Number of Codons' values and GC, GC3s content, we inferred that codon usage bias was affected by gene nucleotide composition also. In addition, the hydrophobicity of each protein also played some roles in shaping codon usage in this organelle, which could be confirmed by the significant correlation between the positions of genes placed on the first axis and the hydrophobicity value of each protein. In summary, natural selection played a crucial role, nucleotide mutational bias and amino acid composition only in a minor way, in shaping codon usage in the mitochondrion genome of rice. Notably, 21 codons defined firstly as 'optimal codons' might provide some more useful information for gene engineering and/or evolution studying.  相似文献   

19.
The phenomenon of codon usage bias is known to exist in many genomes and it is mainly determined by mutation and selection. To understand the patterns of codon usage in nemertean mitochondrial genomes, we use bioinformatic approaches to analyze the protein-coding sequences of eight nemertean species. Neutrality analysis did not find a significant correlation between GC12 and GC3. ENc-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENc values are below it. ENc-plot suggested that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally and we propose that codons containing A or U at third position are used preferentially in nemertean species, regardless of whether corresponding tRNAs are encoded in the mitochondrial DNA. Context-dependent analysis indicated that the nucleotide at the second codon position slightly affects synonymous codon choices. These results suggested that mutational and selection forces are probably acting to codon usage bias in nemertean mitochondrial genomes.  相似文献   

20.
Palidwor GA  Perkins TJ  Xia X 《PloS one》2010,5(10):e13431

Background

In spite of extensive research on the effect of mutation and selection on codon usage, a general model of codon usage bias due to mutational bias has been lacking. Because most amino acids allow synonymous GC content changing substitutions in the third codon position, the overall GC bias of a genome or genomic region is highly correlated with GC3, a measure of third position GC content. For individual amino acids as well, G/C ending codons usage generally increases with increasing GC bias and decreases with increasing AT bias. Arginine and leucine, amino acids that allow GC-changing synonymous substitutions in the first and third codon positions, have codons which may be expected to show different usage patterns.

Principal Findings

In analyzing codon usage bias in hundreds of prokaryotic and plant genomes and in human genes, we find that two G-ending codons, AGG (arginine) and TTG (leucine), unlike all other G/C-ending codons, show overall usage that decreases with increasing GC bias, contrary to the usual expectation that G/C-ending codon usage should increase with increasing genomic GC bias. Moreover, the usage of some codons appears nonlinear, even nonmonotone, as a function of GC bias. To explain these observations, we propose a continuous-time Markov chain model of GC-biased synonymous substitution. This model correctly predicts the qualitative usage patterns of all codons, including nonlinear codon usage in isoleucine, arginine and leucine. The model accounts for 72%, 64% and 52% of the observed variability of codon usage in prokaryotes, plants and human respectively. When codons are grouped based on common GC content, 87%, 80% and 68% of the variation in usage is explained for prokaryotes, plants and human respectively.

Conclusions

The model clarifies the sometimes-counterintuitive effects that GC mutational bias can have on codon usage, quantifies the influence of GC mutational bias and provides a natural null model relative to which other influences on codon bias may be measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号