首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The immobilization of anti-Salmonella antibodies by two methods were studied and evaluated for their potential use in a piezoelectric biosensor. The optimum temperature-time combinations for the highest immobilization yields were determined for both methods. Protein A binding was found to be 67.4+/-3.8% on the gold surface which then allowed an immobilization of 42.1+/-2.09% antibody. The degree of antibody immobilization via surface aldehyde groups of glutaraldehyde (GA) on a precoated quartz crystal with polyethylenimine (PEI) was 31.6+/-0.3%. A piezoelectric probe was designed and used in dry assays to observe the frequency change due to addition of mass by the immobilization layers. The frequency changes recorded showed a better reproducibility and less added mass for the Protein A method. The frequency decrease due to microg of added antibodies was compared to frequency decrease calculated by the Sauerbrey equation. The experimental data was found to be only approximately 8% of theoretical data. The functionality of the immobilized antibodies with the Protein A method was tested with S. typhimurium in a wet chamber and the frequency decrease was compared to results of a similar system activated with PEI-GA immobilization. The frequency decreases with S. typhimurium concentration of approximately 1.5 x 10(9) CFU/ml were 50+/-2 Hz and 44+/-3 Hz for the Protein A method and PEI-GA method, respectively. It was concluded that although both methods resulted in comparable activities in terms of % immobilized protein and frequency decreases due to Salmonella binding, the Protein A method was favorable due to stability and better reproducibility of the immobilization layers.  相似文献   

2.
Porous gold surfaces for biosensor applications   总被引:1,自引:0,他引:1  
The sensitivity of optical biosensors where the detection takes place on a planar gold surface can be improved by making the surface porous. The porosity allows a larger number of ligands per surface area resulting in larger optical shifts when interacting with specifically binding analyte molecules. The porous gold was deposited as a thin layer on a planar gold surface by electrochemical deposition in a solution of tetrachloroaurate and lead acetate. A protein, streptavidin, was adsorbed into the formed porous layer and the time course of the adsorption was monitored by in-situ ellipsometry. When the porous layer was 500 nm in thickness a six-fold increase of the ellipsometric response was obtained compared with a planar gold surface. The dependency of porosity and layer thickness was explained with a mathematical model of the gold/porous gold/protein/solution system.  相似文献   

3.
A supramolecular approach was used for adsorbing a monolayer of adamantane-modified phenylalanine dehydrogenase on β-cyclodextrin-coated Au electrodes. The enzyme electrode (poised at +200 mV vs. Ag/AgCl) showed a linear amperometric response up to 3 mM l-phenylalanine (l-Phe) with a lower detection limit of 15 μM. The reversible nature of this immobilization approach was confirmed.  相似文献   

4.
The amount of active capture antibodies immobilized per unit square is crucial to developing effective antibody chips, biosensors, immunoassays and other molecular recognition technologies. In this study, we present a novel yet simple method for oriented antibody immobilization at high density based on the formation of an orderly, organized aggregation of immunoglobulin G (IgG) and staphylococcal protein A (SPA). Following the chelation of His-tag with Ni(2+), antibodies were immobilized on a solid surface in a three-dimensional (3D) manner and exposed the analyte receptor sites well, which resulted in a substantial enhancement of the analytical signal with more than 64-fold increase in detection sensitivity. Pull-down assays confirmed that IgG antibody can only bind to Ni(2+) matrix indirectly via a SPA linkage, where the His-tag is responsible for binding Ni(2+) and homologous domains are responsible for binding IgG Fc. The immobilization approach proposed here may be an attractive strategy for the construction of high performance antibody arrays and biosensors as long as the antibody probe is of mammalian IgG.  相似文献   

5.
We focused our study on the olfactory cells growth on biocompatible polymer films electrodeposited on a silicon microsystem. Several substrates such as polyethyleneimine (PEI), polypropyleneimine (PPI), and polypyrrole (PPy), acting as potentially good candidates for cell culture, were tested in order to allow cells to adhere and proliferate. During their growth, the evolution of their morphology was monitored using both confocal microscope and immunohistochemistry, leading to the conclusion of a normal development. An estimation of the adhesion and proliferation rates of rat neuronal cell cultures indicated that PEI and PPI were the best substrates for cultivating olfactory cells.  相似文献   

6.
Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.  相似文献   

7.
Using a high-throughput surface discovery approach, we have generated a 1600-member library of metal-containing surfaces and screened them for antibody binding potential. The surface library assembly involved graft modification of argon plasma-treated polyvinylidenedifluoride (PVDF) membranes with alternating maleic anhydride-styrene copolymer followed by anhydride ring opening with a range of secondary amines and microarray contact printing of transition metal complexes. The microarrays of metal-containing surfaces were then tested for their antibody binding capacity by incubation with a biotinylated mouse antibody in a chemiluminescence assay. A total of 11 leads were identified from the first screen, constituting a "hit" rate of 0.7%. A smaller 135-member surface library was then synthesized and screened to optimize existing hits and generate additional leads. To demonstrate the applicability of these surfaces to other formats, high-binding surface leads were then transferred onto Luminex beads for use in a bead flow cytometric immunoassay. The novel one-step antibody coupling process increased assay sensitivity of a Luminex tumor necrosis factor immunoassay. These high-binding surfaces do not require prior incorporation of polyhistidine tags or posttreatments such as oxidation to achieve essentially irreversible binding of immunoglobulin G.  相似文献   

8.
The investigation of Protein A and antibody adsorption on surfaces in a biological environment is an important and fundamental step for increasing biosensor sensitivity and specificity. The atomic force microscope (AFM) is a powerful tool that is frequently used to characterize surfaces coated with a variety of molecules. We used AFM in conjunction with scanning electron microscopy to characterize the attachment of protein A and its subsequent binding to the antibody and Salmonella bacteria using a gold quartz crystal. The rms roughness of the base gold surface was determined to be approximately 1.30 nm. The average step height change between the solid gold and protein A layer was approximately 3.0 +/- 1.0 nm, while the average step height of the protein A with attached antibody was approximately 6.0 +/- 1.0 nm. We found that the antibodies did not completely cover the protein A layer, instead the attachment follows an island model. Salt crystals and water trapped under the protein A layer were also observed. The uneven adsorption of antibodies onto the biosensor surface might have led to a decrease in the sensitivity of the biosensor. The presence of salt crystals and water under the protein A layer may deteriorate the sensor specificity. In this report, we have discussed the application and characterization of protein A bound to antibodies which can be used to detect bacterial and viral pathogens.  相似文献   

9.
We describe a novel immobilization technique to investigate interactions between immobilized gangliosides (GD3, GM1, and GM2) and their respective antibodies, antibody fragments, or binding partners using an optical biosensor. Immobilization was performed by direct injection onto a carboxymethyldextran sensor chip and did not require derivatization of the sensor surface or the ganglioside. The ganglioside appeared to bind to the sensor surface by hydrophobic interaction, leaving the carbohydrate epitope available for antibody or, in the case of GM1, cholera toxin binding. The carboxyl group of the dextran chains on the sensor surface did not appear to be involved in the immobilization as evidenced by equivalent levels of immobilization following conversion of the carboxyl groups into acyl amino esters, but rather the dextran layer provided a hydrophilic coverage of the sensor chip which was essential to prevent nonspecific binding. This technique gave better reactivity and specificity for anti- ganglioside monoclonal antibodies (anti-GD3: KM871, KM641, R24; and anti-GM2: KM966) than immobilization by hydrophobic interaction onto a gold sensor surface or photoactivated cross-linking onto carboxymethydextran. This rapid immobilization procedure has facilitated detailed kinetic analysis of ganglioside/antibody interactions, with the surface remaining viable for a large number of cycles (>125). Kinetic constants were determined from the biosensor data using linear regression, nonlinear least squares and equilibrium analysis. The values of kd, ka, and KAobtained by nonlinear analysis (KAKM871 = 1.05, KM641 = 1.66, R24 = 0.14, and KM966 = 0.65 x 10(7) M- 1) were essentially independent of concentration and showed good agreement with data obtained by other analytical methods.   相似文献   

10.
The performance of an immuno-analytical system can be assessed in terms of its analytical sensitivity,i.e., the detection limit of an analyte, which is determined by the amount of analyte molecules bound to the capture antibody that has been immobilized onto a solid surface. To increase the number of the binding complexes, we have investigated a site-directed immobilization of an antibody that has the ability to resolve a current problem associated with a random arrangement of the insolubilized immunoglobulin. The binding molecules were chemically reduced to produce thiol groups that were limited at the hinge region, and then, the reduced products were coupled to biotin. This biotinylated antibody was bound to a streptavidincoated surface via the streptavidin-biotin reaction. This method can control the orientation of the antibody molecules present on a solid surface and also can significantly reduce the possibility of steric hindrance in the antigen-antibody reactions. In a two-site immunoassay, the introduction of the site-directly immobilized antibody as the capture enhanced the sensitivity of analyte detection approximately 10 times compared to that of the antibody randomly coupled to biotin. Such a novel approach would offer a protocol of antibody immobilization in order for the possibility of constructing a high performance immunochip.  相似文献   

11.
There are numerous chemical methods published that enable protein coupling to carboxymethyl (CM) dextran. Here we have taken traditional amine coupling using N-hydroxysuccinimide (NHS) and N'-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and coupled an antibody fragment (scFv) to CM dextran at a very high density. Using an upgraded BIAlite from Biacore AB, more than 7000 RU of scFv was coupled to a CM dextran biosensor chip. In addition, scanning electron microscopy was performed on CM dextran biosensor chips following amine coupling of 30 nm gold anti-IgG particles. This showed that amine coupling was uniform across the biosensor chip surface. Calculations show that 7620 RU of an scFv coupled to such a surface results in a mean distance between binding sites of 8.8 nm. This equates to a packing volume of approximately 20% of the available space occupied by the antibody fragment. Comparisons made with densities of covalently coupled IgG show that a greater number of antibody fragment molecules can be coupled per unit area. This is most likely due to the smaller size of an antibody fragment (scFv), which has a volume of less than 20% of an IgG molecule. The significance of these findings is discussed.  相似文献   

12.
Comparison of antibody functionality using different immobilization methods   总被引:4,自引:0,他引:4  
This study investigates the influence of antibody immobilization methods on antigen capture. Adsorption and two surface chemistries, an aminosilane chemistry and a common heterobifunctional crosslinker (N-gamma-maleimidobutyryloxy-succinimide ester, GMBS), were compared and evaluated for their ability to immobilize antibodies and capture antigen. The role of protein A as an orienting protein scaffold component in each of these techniques was also evaluated. Through experimentation it was determined that the GMBS technique immobilized the highest amount of antibody and minimized nonspecific binding. For all techniques, the most functional antibodies were found to be those immobilized with protein A. Interestingly, the aminosilane technique demonstrated the highest antigen capture with antibody alone but also exhibited the highest level of nonspecific binding.  相似文献   

13.
A method is described for the incorporation of tiron as a substrate for tyrosinase enzyme into a polypyrrole film deposited on indium titanium oxide (ITO) glass. The presence of tiron in the polypyrrole film is verified by cyclic voltammetry (CV). The enzyme activity using the polypyrrole-tiron film is confirmed by the catalytic conversion of immobilised substrate to quinones by the enzyme. The use of both potentiometric and optical methods for the detection of the catalytic activity of the polypyrrole-tiron film and their potential use for the determination of monophenolase activity of apple polyphenol oxidase is described. This is the first report of this kind whereby tiron has been immobilised in a polypyrrole matrix for the enzyme activity determination.  相似文献   

14.
The operating and storage stability of a receptor element of an amperometric biosensor based on thePseudomonas rathonis strain T capable of degrading surfactants was tested. Microbial cells were immobilized by incorporation in gels (agar, agarose, and calcium-alginate), polyvinyl alcohol membrane, adhesion to Chromatographic paper GF/A, or by cross-linking induced by glutaric aldehyde. Incorporation of microbial cells in agar gel provides long-standing conservation of their activity and viability during measurements of high concentrations of surfactants and allows the receptor element of the biosensor to be rapidly recovered after measurements.  相似文献   

15.
In recent years, the use of acetylcholinesterases (AChEs) in biosensor technology has gained enormous attention, in particular with respect to insecticide detection. The principle of biosensors using AChE as a biological recognition element is based on the inhibition of the enzyme's natural catalytic activity by the agent that is to be detected. The advanced understanding of the structure-function-relationship of AChEs serves as the basis for developing enzyme variants, which, compared to the wild type, show an increased inhibition efficiency at low insecticide concentrations and thus a higher sensitivity. This review describes different expression systems that have been used for the production of recombinant AChE. In addition, approaches to purify recombinant AChEs to a degree that is suitable for analytical applications will be elucidated as well as the various attempts that have been undertaken to increase the sensitivity of AChE to specified organophosphates and carbamates using side-directed mutagenesis and employing the enzyme in different assay formats.  相似文献   

16.
We report on an immobilization strategy utilizing layer-by-layer encapsulated microparticles of enzymes within a nanoscale polyelectrolyte film. Encapsulation of glucose oxidase (GOD) microparticles was achieved by the sequential adsorption of oppositely charged polyelectrolytes onto the GOD biocrystal surface. The polyelectrolyte system polyallylamine/polystyrene sulfonate was used under high salt conditions to preserve the solid state of the highly water soluble GOD biocrystals during the encapsulation process. The resulting polymer multilayer capsule of about 15 nm wall thickness is permeable for small molecules (glucose), but non-permeable for macromolecules thus preventing the enzyme from leakage and at the same time shielding it from the outer environment e.g., from protease or microbial activity. Decrease of the buffer salt concentration leads to the dissolution of the enzyme under formation of μ-bioreactors. The spherical μ-bioreactors are bearing an extremely high loading of biocompound per volume. Encapsulated GOD was subsequently used to construct a biosensor by nanoengineered immobilisation of μ-bioreactor capsules onto an electrode surface. The presented approach demonstrates a general method to encapsulate highly soluble solid biomaterials and an immobilization strategy with the potential to create highly active thin and stable films of biomaterial.  相似文献   

17.
Summary Some of the fundamental problems in covalent attachment of peptides and proteins to putative biosensor surfaces are reviewed and specific approaches to these problems discussed. In addition, selected aspects of our recent work utilizing self-assembled monolayer (SAM) systems designed to react selectively with the thiol side chain of Cys in proteins are presented. Uniform attachment of a 21-amino acid peptide antigen through a single Cys residue with retention of biological function (antibody binding) has been attained. Further work with this system may lead to solutions for some of the problems which currently prevent the development of reliable biosensors for industrial and medical use.This paper was presented at a Symposium on Enzyme Electrodes held at the Annual Meeting of the Society of Industrial Microbiology, and the Canadian Society of Microbiologists, in Toronto, Canada (August 3, 1993).  相似文献   

18.
19.
《IRBM》2008,29(2-3):192-201
In this report, we describe a novel strategy for the design of a clinical urea biosensor using a process based on assembled multilayer systems. Biotinylated enzyme (urease–subiotin) was immobilized on the biotinylated polypyrrole coated Chemical field effect capacitance (ChemFEC) devices using the high avidin–biotin affinity. The immobilized enzyme activity was checked by its catalytic conversion of urea into carbon dioxide and ammonia. Electrochemical response of the bridge system constructed on Si/SiO2/Si3N4 electrodes to urea addition was evaluated using the capacity–potential measurements. In addition, contact-angle measurements were carried out to control the change of surface energy and their components before and after each layer formation. The developed urea biosensor demonstrates high performances: a good sensitivity of 50 mV/pUrea in the linear urea concentration range from 10−4 to 10−1 M and an excellent operational stability after three weeks of continuous use. The immobilized urease was characterised through its apparent Michaelis–Menten constant (5 mM) and the activation energy of the enzymatic reaction (20 kJ mol−1). It was also shown that capacitive measurements can be used to quantify the interaction between molecular systems, based on avidin and biotin molecules.  相似文献   

20.
To develop effective protein immobilization technology with minimal amounts of protein for high sensitivity surface acoustic wave biosensors, we determined the binding properties, and morphological characteristics of human interleukin-6 (IL-6), a pro-inflammatory cytokine, on the surface of ZnO, and SiO(2) films grown onto (100) Si substrates, for the first time. Interleukin-6 was immobilized in the range of 0.276-10 pg/ml on the surface of ZnO and SiO(2), and visualized at each stage, while protein-protein interactions were measured with the antigen/antibody immunoassay of solid-phase ELISA, which we modified for these types of substrates. A relative mass value was determined in each case. ELISA detected upward of 1 and 6 ng/ml of protein applied on ZnO and SiO(2), respectively. It is concluded that the more reactive ZnO surface is a new and more effective template for protein immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号