首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electron-microscopic study has been made of adrenergic and cholinergic nerve fibres and synapses in the pelvic ganglion of the guinea-pig at intervals of up to 60 days following section of the hypogastric and pelvic nerves. Transection of the hypogastric nerves led to degeneration of 80-90% of the cholinergic nerve profiles and synapses in the ganglion. The small number of adrenergic nerves and synapses did not change, but 30-60 days after section, this number increased 8-10 times. Transection of the pelvic nerves led to degeneration of about 15% of the cholinergic nerve terminals, but no change in adrenergic terminals. After transection of both hypogastric and pelvic nerves, only about 1% of cholinergic nerves survived, but after 30-60 days, the number of adrenergic nerves increased 8-10 times. It is concluded that following cholinergic nerve degeneration in the ganglion, adrenergic nerves, probably originating as collateral sprouts from postganglionic neurones and granule-containing cells, can replace them to some extent.  相似文献   

2.
The present study evaluates the binding of [3H]quinuclidinyl benzilate, [3H]QNB, as a measure of cholinergic muscarinic binding in six areas of the rat medulla oblongata associated with the cranial nerves. In an experimental group, the right vagus nerve was severed in the neck in order to determine whether the specific muscarinic binding sites might be located on cells that contribute efferent fibers to the vagus nerve. The level of activity of choline acetyltransferase (ChAT) also was determined in the same six areas. Additional experiments utilizing the retrograde transport of toxic ricin, a 60,000 dalton agglutinin that acts as a potent ribosomal toxin, was carried out to further evaluate localization of specific muscarinic binding in the DMN after destruction of the preganglionic efferent cells. These results support the conclusion that specific binding of the muscarinic antagonist [3H]QNB observed in the DMN of the vagus of the rat is not associated with the large cells that contribute efferent fibers into the vagus nerve. We suggest that the specific cholinergic muscarinic binding is located on interneuronal cell surfaces, on afferent terminals of local circuit neurons, or on afferent terminals of long projection axons which arise from neurons in the brainstem, hypothalamus, or forebrain.This issue is dedicated to Donald B. Tower.  相似文献   

3.
Summary After sectioning the postganglionic adrenergic sympathetic nerve trunk for the submandibular gland, as close to the submandibular artery as practicable, its central end was sutured to the peripheral end of the preganglionic cholinergic parasympathetic nerve trunk for the gland, the chorda, which had been sectioned where it left the lingual nerve. The effects of this heterologous cross-sature were studied at different times, up to 1 year afterwards, by assessing the physiological and pharmacological responses of the glands and the neuro-histochemical changes in the nerve trunks and in the nerves within the glands.In all cases adrenergic sympathetic nerves grew across the site of suture and down the erstwhile cholinergic parasympathetic trunk, eventually to develop connections in the gland. In some cases the functional adrenergic reinnervation of the submandibular gland appeared to result exclusively or predominantly from the direct downgrowth of adrenergic axons to the gland, via the crossed nerves. In other cases however, in addition to a direct glandular reinnervation, there was some physiological and morphological evidence which suggested that possible heterogenous synaptic contacts may have been created between postganglionic sympathetic axons and cholinergic ganglion cells in the chorda nerve.This work was supported by a grant from the Joint Research Committee, King's College Hospital.  相似文献   

4.
Summary The mean peak CV's of two electrophysiologically defined groups of fibres in the intestinal nerve of the chicken have been determined.One group of fibres is constituted by the processes of enteric cholinergic neurones which project along the side branches of the intestinal nerve and synapse within the nerve trunk. These preganglionic fibres have a mean peak CV (at 40 °C) of 0.31 m·s–1.The other group is made up of fibres of postganglionic neurones which project orally along the nerve trunk. The results suggest that some postganglionic neurones project only as far as the next ganglion whilst others project beyond the next two ganglia for distances greater than 5 mm. The postganglionic fibres have a mean peak CV (at 40 °C) of 0.71 m·s–1.These figures demonstrate that both pre- and postganglionic fibres are unmyelinated. The temperature coefficient (Q10) for the CV of unmyelinated fibres in the intestinal nerve was 1.57.Abbreviations CAP compound action potential - CV conduction velocity - Q 10 temperature coefficient  相似文献   

5.
Afferent stimulation of one canine thoracic cardiopulmonary nerve can generate compound action potentials in another ipsilateral cardiopulmonary nerve. These compound action potentials persist after acute decentralization of the middle cervical ganglion, indicating that they result from neural activity in the middle cervical ganglion and thoracic nerves. Changing the frequency of stimulation can alter the compound action potentials, suggesting that temporal facilitation or inhibition occurs in this middle cervical ganglion preparation. The compound action potentials can be modified by stimulation of sympathetic preganglionic fibers and by hexamethonium, atropine, phentolamine, propranolol, and (or) manganese. It thus appears that afferent cardiopulmonary nerves can activate efferent cardiopulmonary nerves via synaptic mechanisms in the stellate and middle cervical ganglia. It also appears that these mechanisms involve adrenergic and cholinergic receptors and are influenced by preganglionic sympathetic fibers arising from the cord.  相似文献   

6.
The indirect immunofluorescence technique was used to determine the distribution of peptide-containing axons in the gall bladder of the cane toad, Bufo marinus. In addition, the adrenergic innervation of the gall bladder was examined by use of immunoreactivity to the catecholamine-synthesizing enzyme, tyrosine hydroxylase, and glyoxylic acid-induced fluorescence. On the basis of peptide coexistence, two intrinsic populations of neurones and their projecting fibres could be distinguished substance P neurones and vasoactive intestine peptide neurones. Neither of these two types of neurones contained any other colocalized neuropeptides. Four populations of nerve fibres arising from cell bodies outside the gall bladder were identified: nerves containing colocalized galanin, somatostatin and vasoactive intestinal peptide; nerves containing colocalized calcitonin gene-related peptide and substance P; adrenergic nerves containing neuropeptide Y; and nerves containing only adrenaline.  相似文献   

7.
Comparative studies of purinergic nerves.   总被引:7,自引:0,他引:7  
Purinergic nerves supply the gastrointestinal tract of vertebrates, including fish, amphibians, reptiles and birds, as well as mammals. Their cell bodies are located in Auerbach's plexus and their axons extend in an anal direction before innervating mainly the circular muscle coat. In the stomach they are controlled by preganglionic cholinergic fibres of parasympathetic origin. They are involved in "receptive relaxation" of the stomach, "descending inhibition" in peristalsis and reflex relaxation of oesophageal and internal anal sphincters. The terminal varicosities of purinergic nerves are characterised by a predominance of "large opaque vesicles," which can be distinguished from the "large granular vesicles" found in small numbers in both adrenergic and cholinergic nerves. Stimulation of purinergic nerves with single pulses produces hyperpolarisations of up to 25 mV (inhibitory junction potentials) in smooth muscle cells. These potentials are unaffected by atropine, adrenergic neuron blocking agents or sympathetic denervation, but are abolished by tetrodotoxin. The "rebound contraction" which characteristically follows cessation of purinergic nerve stimulation is probably due to prostaglandin. Evidence that ATP is the transmitter released from purinergic nerves includes: (1) synthesis and storage of ATP in nerves; (2) release of ATP from the nerves when they are stimulated; (3) exogenously applied ATP mimicking the action of nerve-released transmitter, both producing a specific increase in K+ conductance; (4) the presence of Mg-activated ATPase, 5'-nucleotidase and adenosine deaminase, enzymes which inactivate ATP; (5) drugs (including quinidine, some 2-substituted imidazolines, 2-2'pyridylisatogen and dipyridamole) which produce similar blocking or potentiating effects on the response to exogenously applied ATP and nerve stimulation. Speculations are made about the evolution and development of the nervous system, including the possibility that purinergic nerves are a primitive nerve type.  相似文献   

8.
Summary The adrenergic and cholinergic nerves innervating the cerebral blood vessels of four species of Japanese chiropterids (Rhinolophus ferrumequinum, Murina leucogaster, Vespertilio superans and Miniopterus Schreibersi) have been investigated using specific histochemical techniques. In all these species of bats arteries of the internal carotid system are poorly developed, whereas those of the vertebro-basilar system are well developed. The adrenergic and cholinergic nerves innervating these cerebral arteries, however, all originate from the stem nerve bundles entering the cranial cavity along the internal carotid artery. Both nerve plexuses are among the densest of any vertebrate species so far investigated. Adrenergic nerve plexuses are usually composed of complicated meshworks of fine fibres, while cholinergic ones are composed of rather longitudinally arranging meshworks of both thick and thin fibres, exhibiting a very high acetylcholinesterase activity. Small parenchymal arteries and arterioles are also dually innervated by adrenergic and cholinergic nerve fibres of peripheral origin. Intracerebral capillaries, on the other hand, are in several places directly connected with both adrenergic and cholinergic fibres of parenchymal origin. Capillaries in the cerebral and cerebellar cortices, diencephalon and cochlear nucleus in V. superans exhibit a heavy non-nervous acetylcholinesterase activity in their walls, but in R.ferrumequinum and M. schreibersi, the response is weak or negative, except for that in the cochlear nucleus.  相似文献   

9.
Apart from being a prominent (inhibitory) neurotransmitter that is widely distributed in the central and peripheral nervous system, -aminobutyric acid (GABA) has turned out to exert trophic actions. In this manner GABA may modulate the neuroplastic capacity of neurons and neuron-like cells under various conditions in situ and in vitro. In the superior cervical ganglion (SCG) of adult rat, GABA induces the formation of free postsynaptic-like densities on the dendrites of principal neurons and enables implanted foreign (cholinergic) nerves to establish functional synaptic contacts, even while preexisting connections of the preganglionic axons persist. Apart from postsynaptic effects, GABA inhibits acetylcholine release from preganglionic nerve terminals and changes, at least transiently, the neurochemical markers of cholinergic innervation (acetylcholinesterase and nicotinic receptors). In murine neuroblastoma cells in vitro, GABA induces electron microscopic changes, which are similar in principle to those seen in the SCG. Both neuroplastic effects of GABA, in situ and in vitro, could be mimicked by sodium bromide, a hyperpolarizing agent. In addition, evidence is available that GABA via A- and/or B-receptors may exert direct trophic actions. The regulation of both types of trophic actions (direct, receptor-mediated vs. indirect, bioelectric activity dependent) is discussed.Special issue dedicated to Dr. Claude Baxter.  相似文献   

10.
Abstract— After previous studies had shown that nerve growth factor produces a very similar change in the enzyme pattern of adrenergic neurons as does an increased activity of the preganglionic cholinergic nerves, the present experiments revealed that the nerve growth factor-mediated selective induction of TH and DBH is enhanced by glucocorticoids in a way similar to that mediated by acetylcholine via nicotinic receptors. Corticosterone (5 μM) produced not only an increase in the maximal response to NGF but shifted the concentration response curve of TH to NGF to the left. The potentiation effect was shown to be specific for glucocorticoids, since other steroid hormones like testosterone, β-estradiol and progesterone had no effect. Moreover, the glucocorticoid effect could be antagonized by cortexolone, suggesting an effect via glucocorticoid receptors. In addition to the potentiation of the nerve growth factor-mediated enzyme induction, glucocorticoids reduced the exposure time to NGF, necessary to initiate maximal TH induction, from 4 h to 10 min. The glucocorticoid potentiation of NGF-mediated specific enzyme induction is discussed in relation to the site and mechanism of action of NGF.  相似文献   

11.
Summary By employing biochemical assay and histochemical enzyme techniques the effect of preganglionic sympathectomy on the cholinesterase (ChE) activity in the superior cervical ganglia of rats and hamsters was investigated. Biochemical assays indicate that the ChE activity in the superior cervical ganglia of adult rats and hamsters is 57.19 and 28.63 respectively (expressed in u moles acetylcholine hydrolyzed per min per g of tissue); two weeks after preganglionic denervation, about 50% and 60% of ChE activity are lost respectively. Histochemical enzyme examination reveals that in the rat superior cervical ganglion, the majority of the neurons are adrenergic with weak to moderate acetylcholinesterase (AChE) reaction and the minority of the neurons are cholinergic with strong AChE activity, while only one type of adrenergic neurons exhibits a weak AChE activity in the hamster superior cervical ganglion. The AChE activity is localized in the perinuclear area, in the cisternae of the rough surfaced endoplasmic reticulum, in the Golgi complex and on the plasma membrane of the hamster's neurons; it is mainly localized in the cisternae of the rough surfaced endoplasmic reticulum of the rat's neurons. AChE reaction product is also detected on the axolemmal membranes of the preganglionic nerve fibers in the sympathetic ganglia of rats and hamsters.After preganglionic sympathectomy, the AChE activity in the adrenergic neurons and in the preganglionic unmyelinated nerve fibers is markedly reduced, whereas the cholinergic neurons and preganglionic myelinated nerve fibers remain unchanged. On the basis of these results two conclusions have been reached: (1) The fact that strong AChE activity localized in the cholinergic neurons and preganglionic myelinated fibers is not influenced by denervation, suggests that these structures are able to produce AChE. (2) The reduction of AChE activity in the rat and hamster superior cervical ganglia two weeks after preganglionic denervation, observed by histochemical examination, can be correlated with a concomitant measurable reduction determined by biochemical assays.Supported in part by a grant from the National Science Council, Republic of China. The author wishes to express his gratitude to the Department of Pharmacology, College of Medicine, National Taiwan University, for the use of its equipment for biochemical assays  相似文献   

12.
T he N ormal biochemical maturation of postsynaptic adrenergic neurons in mouse and rat superior cervical ganglion depends upon an intact preganglionic innervation (B lack , H endry and I versen , 1971a, 1972; T hoenen , S aner and K eitler , 1972). In recent studies tyrosine hydroxylase, the rate-limiting enzyme in norepinephrine biosynthesis (L evitt , S pector , S joerdsma and U denfriend , 1965), with localization to adrenergic neurons in the ganglion (B lack , H endry and I versen , 1971b), was used to monitor maturation of these cells. The developmental increase in tyrosine hydroxylase activity occurred simultaneously with the appearance of ganglionic synapses and was prevented by transection of the preganglionic nerve trunk (B lack , H endry and I versen , 1971a). These observations suggest that presynaptic cholinergic nerve terminals regulate the biochemical development of postsynaptic neurons in the superior cervical ganglion. The mechanism(s) by which presynaptic cholinergic terminals regulate postsynaptic development has not been elucidated. Such trans-synaptic regulation may be dependent on normal impulse transmission and/or may involve other unidentified, trophic factors. The results presented in the present communication suggest that normal development of ganglionic tyrosine hydroxylase activity is dependent on depolarization of postsynaptic adrenergic neurons.  相似文献   

13.
Summary Histochemically demonstrable cholinesterases of rat skin and cutaneous nerves hydrolyze acetylthiocholine iodide and butyrylthiocholine iodide. Cholinesterase activity of the skin was located in the epidermis, in the hair follicles at the level of the sebaceous glands, in adjacent parts of the sebaceous glands, in erector pili muscles and their nerves, in cutaneous and subcutaneous nerves and nerve trunks, including some nerves accompanying cutaneous blood vessels, and in the membranes of fat cells. No encapsulated nerve endings were found. In the nerves of erector pili muscles there was some neurilemmal non-specific cholinesterase activity, demonstrated in the presence of 10–5 M BW 284C 51, and specific acetylcholinesterase activity resistant to 10–5 M iso-OMPA. The cholinesterase activity in other cutaneous nerves was inhibited by 10–5 M iso-OMPA but was resistant to 10–5 M BW284 C 51, thus representing mainly non-specifc cholinesterase (nsChE) activity.The adrenergic nerves of the dorsal skin, as revealed by glyoxylic acid-induced fluorescence (GIF), were located in association with erector pili muscles and surrounded arteries and arterioles. Small fluorescent nerves were situated in subcutaneous nsChE-positive nerve trunks.Using GIF and cholinesterase techniques performed either simultaneously or consecutively, it was found that the nsChE-positive, probably sensory, nerves accompanying blood vessels were fewer in number than the fluorescent adrenergic nerves and ran a course independent of them. No cholinesterase reaction was seen in the fluorescent adrenergic nerves when short incubation times were used. When the incubation time was prolonged overnight, the nsChE reaction closely followed the course of fluorescent adrenergic nerves.  相似文献   

14.
On the basis of the specific [3H]quinuclidinyl-benzilate binding, the transport of muscarinic cholinergic receptors has been demonstrated in the ventral horn, sciatic nerve and in the 3 mm segments proximal and distal to the ligature of rat sciatic nerves ligated for 24 h (a) without electrolytic lesion, (b) six days after lesion of the spinal ganglia, (c) six days after lesion of the motoric axons, and (d) six days after transection of the sciatic nerve. The distribution of these receptors was also studied in the ventral spinal horn, dorsal root sensory axons, spinal ganglia and sciatic nerve of rabbit.Our results suggest that the receptors are transported in the sciatic nerve of rat. This transport consists of a large anterograde, and a discrete retrograde flow of muscarinic cholinergic receptors. Most of the receptors are possibly synthesized in the motoneuron cell bodies and migrate in the motoric axons; to a lesser extent they may also be synthesized in the cell bodies of the dorsal root ganglia and migrate in the sensory axons of the sciatic nerve.  相似文献   

15.
Summary The adrenergic and cholinergic innervation to the rat iris has been studied at a light and electron microscopic level. Catecholamine fluorescence histochemistry showed adrenergic nerves to be present in both the dilatator and the constrictor pupillae regions. At a fine structural level the terminal innervation of the iris was studied and criteria for the differentiation between presumptive adrenergic and presumptive cholinergic axon terminals were examined. To aid this examination presumptive adrenergic axons were either labelled with the false adrenergic transmitter, 5-hydroxydopamine, or chemical sympathectomy performed using 6-hydroxydopamine. The value of using acetylcholinesterase staining as a marker for cholinergic nerve terminals was also studied.Results showed a mixed adrenergic/cholinergic innervation to the dilatator pupillae. In the constrictor pupillae an exclusively cholinergic innervation was found although adrenergic and cholinergic nerves were found supplying the blood vessels and at the dilatator-constrictor interface. These findings are discussed with regard to innervation-function relationships in the iris.  相似文献   

16.
γ-Aminobutyric Acid Uptake by Sympathetic Ganglia   总被引:20,自引:0,他引:20  
EXOGENOUS γ-aminobutyric acid (GABA) accumulates against a concentration gradient in isolated mammalian nervous tissue1–3 and mixes with GABA stored in the tissue4. Thus, neurones which use GABA as an inhibitory transmitter might be identified by locating sites of accumulation of radioactively-labelled GABA using autoradiography5–7, assuming that exogenous GABA is only taken up into neurones already containing GABA. A correlation between GABA uptake and endogenous content has been noted in slices from different parts of the brain3 and in different nerve-ending fractions8–10. These experiments, however, do not show whether GABA can be accumulated in nerve tissue totally devoid of “gabanergic” neurones. To test this, we have measured the uptake of GABA by isolated sympathetic ganglia. The principal transmitter in the ganglion is acetylcholine while the postganglionic neurones are mainly adrenergic. By analogy with the brain, the ganglion contains negligible amounts of GABA, glutamic decarboxylase or GABA-transaminase11,12.  相似文献   

17.
Summary A population of nerve fibres in the gastro-intestinal tract of mice showing a high affinity for quinacrine was revealed by fluorescence microscopy. Similar results were obtained in rats and guinea pigs. Whole-mounts of sheets of the smooth muscle layer following incubation in 10-6-10-7 M quinacrine for 15–60 min revealed fine fluorescent varicose nerve fibers in the myenteric plexus of Auerbach both around nerve cell bodies and in the interconnecting strands. Many fibers were also present between the strands of the plexus, especially running parallel to the circular muscle layer. Such fibers were not seen in similarly quinacrine-incubated irides. A proportion of the cell bodies in Auerbach's plexus also showed quinacrine accumulation. These cells were apparently smaller neurons, sometimes with fluorescent processes. Intraperitoneal injections of quinacrine failed to demonstrate nerve fibers, but some cell bodies in Auerbach's plexus were positive. Subsequent paraformaldehyde treatment for monoamine visualization showed persistent adrenergic nerve terminals in the intestine and iris. These nerves seemed to be fewer and had a more yellow fluorescence than normally. The identity of the quinacrine-positive fibers is discussed with respect to recent suggestions that purinergic, substance P, enkephalin, and somatosin-containing nerves, in addition to adrenergic and cholinergic nerves, are present in the gut wall.Supported by the Swedish Medical Research Council (04X-03185). Magnus Bergvalls Stiftelse and Karolinska Institutets Fonder. For generous gifts of Mepacrine we thank Winthrop, Skärholmen, Stockholm, Sweden. The skilful technical assistance of Miss Gerd Boetius and Miss Maud Eriksson is gratefully acknowledged  相似文献   

18.
Summary In order to test the premise that non-adrenergic, non-cholinergic (NANC) autonomic nerves have a distinctive ultrastructural appearance, clearly different from that of cholinergic nerves, a detailed quantitative ultrastructural analysis has been made of the non-adrenergic innervation of 15 tissues thought from pharmacological evidence to be innervated by NANC nerves (rat and rabbit anococcygeus muscles; rabbit hepatic portal vein; extrinsically denervated toad lung); cholinergic nerves (atria of rat, rabbit, guinea-pig and toad); or both (guinea-pig cervical and thoracic trachealis muscle; rabbit rectococcygeus muscle; urinary bladder of rat, rabbit, guinea-pig and toad) in addition to their adrenergic supply. Following fixation with a modified chromaffin procedure allowing identification of adrenergic nerves, large, randomly selected samples of non-adrenergic nerve profiles from each tissue were analysed with respect to numbers, relative proportions, and size frequency distributions of different vesicle classes within the profiles. The neuromuscular relationships within each tissue were also analysed. On the basis of these analyses, it is clear that there are no consistent ultrastructural differences between cholinergic and NANC autonomic nerves: neither proportions nor sizes of the vesicles provide any clue as to the transmitter used by a particular nerve. The great majority of nerve profiles, whether cholinergic or NANC, contain predominantly small clear synaptic vesicles. Large filled peptidergic vesicles are no more common in most NANC nerves than in most cholinergic ones. It is concluded, on ultrastructural grounds, that the primary transmitter in these NANC autonomie nerves is most likely to be stored in and released from the small clear vesicles.  相似文献   

19.
The afferent output from the bladder is important for triggering micturition. This study identifies different types of afferent nerve and explores the connections of their collateral fibres on intramural ganglia and potential ganglionic targets. The experiments were performed on tissues from male guinea-pigs (n=16). Fibres positive for choline acetyl transferase (ChAT+) were found to originate close to the urothelium, to transit the sub-urothelial interstitial cell layer and to pass into the lamina propria. A different population of fibres, immunopositive for calcitonin gene-related peptide (CGRP), capsaicin receptors or neurofilament protein (NF), were seen to intertwine with the ChAT+ fibres in the lamina propria. The ChAT+ fibres did not express NF. Ganglia with ChAT+ and NF+ neurones were found in the lamina propria and muscle. ChAT+ fibres, with pronounced terminal varicosities, were present on the nerve cell bodies. Two types were noted: NF+ terminals and those with little or no NF (NF) suggesting that their origins were the ChAT+ afferent collaterals and the adjacent ganglia. Fibres containing CGRP or substance P were seen on the ganglionic cells. α1B adrenergic receptors were also found on the neurones indicative of adrenergic synapses. Thus, the ganglia had multiple inputs. Different types of ChAT+ nerves were seen in the muscle: NF+ and NF. The ChAT+/NF+ nerves may represent a ganglionic output to the muscle. This complex neuronal network may therefore represent the elements generating and modulating bladder sensations. The role of such a scheme in bladder pathology and the therapeutic sites of action of anticholinergic and sympathomimetic drugs are discussed.We gratefully acknowledge the support of Pfizer. This work was supported by a grant from the Detrol Research Programme.  相似文献   

20.
Summary The serotoninergic innervation of the corpus cardiacum (CC) of Locusta migratoria was investigated using two antisera against serotonin. A dense network of immunoreactive nerve fibres was present in the storage lobe of the CC. Immunopositive fibres only sporadically crossed the border between the storage lobe and the glandular lobe of the CC. Immunopositive fibres entered the storage lobe of the CC via the nervus corporis cardiaci I (NCCI); NCCII was immunonegative. Unilateral retrograde fillings of the NCCI with the fluorescent tracer Lucifer yellow, followed by antiserotonin immunocytochemistry, revealed about 20 double-labelled neurones in the anterior part of the pars intercerebralis. The double-labelled neurones were scattered between fluorescent non-immunoreactive neurones. Additionally, 5–7 neurones labelled only with Lucifer yellow were found at the ventrolateral side of the tritocerebrum. No immunopositive neurones were observed in the hypocerebral ganglion. Immunopositive fibres from neurones in the frontal ganglion ran via the recurrent nerve and the neuropile of the hypocerebral ganglion into the paired oesophageal nerve. At most, a few immunopositive nerve fibres occurred in the cardiostomatogastric nerves II, which connect the storage lobe of the CC with the paired oesophageal nerve at the caudal end of the hypocerebral ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号