共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Reciprocal recruitment of DRIP/mediator and p160 coactivator complexes in vivo by estrogen receptor 总被引:9,自引:0,他引:9
Burakov D Crofts LA Chang CP Freedman LP 《The Journal of biological chemistry》2002,277(17):14359-14362
Two functionally distinct classes of coactivators are recruited by liganded estrogen receptor, the DRIP/Mediator complex and p160 proteins, although the relative dynamics of recruitment is unclear. Previously, we have shown a direct, estradiol-dependent interaction between the DRIP205 subunit of the DRIP complex and the estrogen receptor (ER) AF2 domain. Here we demonstrate the in vivo recruitment of other endogenous DRIP subunits to ER in response to estradiol treatment in MCF-7 cells. To explore the relationship between DRIP and p160 coactivators, we examined the kinetics of coactivator recruitment to the ER target promoter, pS2, by chromatin immunoprecipitation. We observed a cyclic association and dissociation of coactivators with the promoter, with recruitment of p160s and DRIPs occurring in opposite phases, suggesting an exchange between these coactivator complexes at the target promoter. 相似文献
4.
Shiama N 《Trends in cell biology》1997,7(6):230-236
5.
6.
7.
8.
9.
10.
11.
12.
The CaaX proteases, Afc1p and Rce1p, have overlapping but distinct substrate specificities 下载免费PDF全文
Trueblood CE Boyartchuk VL Picologlou EA Rozema D Poulter CD Rine J 《Molecular and cellular biology》2000,20(12):4381-4392
Many proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed. In this study, we evaluated processing of a-factor variants with all possible single amino acid substitutions at either the a(1), the a(2), or the X position of the a-factor Ca(1)a(2)X sequence, CVIA. The substrate specificity of the two known yeast CaaX proteases, Afc1p and Rce1p, was investigated in vivo. Both Afc1p and Rce1p were able to proteolyze a-factor with A, V, L, I, C, or M at the a(1) position, V, L, I, C, or M at the a(2) position, or any amino acid at the X position that was acceptable for prenylation of the cysteine. Eight additional a-factor variants with a(1) substitutions were proteolyzed by Rce1p but not by Afc1p. In contrast, Afc1p was able to proteolyze additional a-factor variants that Rce1p may not be able to proteolyze. In vitro assays indicated that farnesylation was compromised or undetectable for 11 a-factor variants that produced no detectable halo in the wild-type AFC1 RCE1 strain. The isolation of mutations in RCE1 that improved proteolysis of a-factor-CAMQ, indicated that amino acid substitutions E139K, F189L, and Q201R in Rce1p affected its substrate specificity. 相似文献
13.
14.
15.
16.
17.
Balasubramanyam K Varier RA Altaf M Swaminathan V Siddappa NB Ranga U Kundu TK 《The Journal of biological chemistry》2004,279(49):51163-51171
18.
19.
Marie E. Bechler William J. Brown 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(3):595-601
Recent studies showed that the phospholipase subunits of Platelet Activating Factor Acetylhydrolase (PAFAH) Ib, α1 and α2 partially localize to the Golgi complex and regulate its structure and function. Using siRNA knockdown of individual subunits, we find that α1 and α2 perform overlapping and unique roles in regulating Golgi morphology, assembly, and secretory cargo trafficking. Knockdown of either α1 or α2 reduced secretion of soluble proteins, but neither single knockdown reduced secretion to the same degree as knockdown of both. Knockdown of α1 or α2 inhibited reassembly of an intact Golgi complex to the same extent as knockdown of both. Transport of VSV-G was slowed but at different steps in the secretory pathway: reduction of α1 slowed trans Golgi network to plasma membrane transport, whereas α2 loss reduced endoplasmic reticulum to Golgi trafficking. Similarly, knockdown of either subunit alone disrupted the Golgi complex but with markedly different morphologies. Finally, knockdown of α1, or double knockdown of α1 and α2, resulted in a significant redistribution of kinase dead protein kinase D from the Golgi to the plasma membrane, whereas loss of α2 alone had no such effect. These studies reveal an unexpected complexity in the regulation of Golgi structure and function by PAFAH Ib. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. 相似文献