共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lee SJ Drabik K Van Wagoner NJ Lee S Choi C Dong Y Benveniste EN 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(8):4658-4666
ICAM-1 is a transmembrane glycoprotein of the Ig superfamily involved in cell adhesion. ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies such as multiple sclerosis, experimental allergic encephalomyelitis, and Alzheimer's disease, suggesting a possible role for ICAM-1 in these disorders. ICAM-1 has been shown to be important for leukocyte diapedesis through brain microvessels and subsequent binding to astrocytes. However, other functional roles for ICAM-1 expression on astrocytes have not been well elucidated. Therefore, we investigated the intracellular signals generated upon ICAM-1 engagement on astrocytes. ICAM-1 ligation by a mAb to rat ICAM-1 induced mRNA expression of proinflammatory cytokines such as IL-1alpha, IL-1beta, IL-6, and TNF-alpha. Examination of cytokine protein production revealed that ICAM-1 ligation results in IL-6 secretion by astrocytes, whereas IL-1beta and IL-1alpha protein is expressed intracellularly in astrocytes. The involvement of mitogen-activated protein kinases (MAPKs) in ICAM-1-mediated cytokine expression in astrocytes was tested, as the MAPK extracellular signal-regulated kinase (ERK) was previously shown to be activated upon ICAM-1 engagement. Our results indicate that ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1. Studies using pharmacological inhibitors demonstrate that both p38 MAPK and ERK1/2 are involved in ICAM-1-induced IL-6 expression, whereas only ERK1/2 is important for IL-1alpha and IL-1beta expression. Our data support the role of ICAM-1 on astrocytes as an inflammatory mediator in the CNS and also uncover a novel signal transduction pathway through p38 MAPK upon ICAM-1 ligation. 相似文献
3.
4.
5.
In order to study the relationship between insulin like growth factor-II (IGF-II) and interleukin-8 (IL-8) that are upregulated in psoriasis, we monitored IL-8 expression in IGF-II-treated human keratinocytes and explored the signaling pathways of IL-8 expression by IGF-II. IGF-II increased the IL-8 mRNA and protein levels in human keratinocytes. The upregulation of IL-8 expression by IGF-II was reduced by pretreatment with inhibitors of tyrosine kinase, Src, PI3-kinase, and ERK, but not by p38. Furthermore, IGF-II remarkably increased the DNA binding activities of NF-kappaB and AP-1, and the IL-8 promoter activity. However, cotransfection with IkappaB mutant blocked the IGF-II-induced IL-8 promoter activity. In addition, cotransfection with dominant negative MEK1 mutant, but not with dominant negative p38 mutant, blocked the IGF-II-induced IL-8 promoter activity. These results suggest that IGF-II is involved in the pathogenesis of psoriasis by inducing IL-8 gene expression through the tyrosine kinase-Src-ERK1/2-AP-1 pathway, and the PI3-kinase and NF-kappaB pathway. 相似文献
6.
Opposing roles of the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades in Ras-mediated downregulation of tropomyosin 下载免费PDF全文
We showed previously that activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, demonstrating the importance of Raf-independent pathways in mediating Ras transformation. To assess the mechanism by which Raf-independent effector signaling pathways contribute to Ras-mediated transformation, we recently utilized representational difference analysis to identify genes expressed in a deregulated fashion by activated Ras but not Raf. One gene identified in these analyses encodes for alpha-tropomyosin. Therefore, we evaluated the mechanism by which Ras causes the downregulation of tropomyosin expression. By using RIE-1 cells that harbor inducible expression of activated H-Ras(12V), we determined that the downregulation of tropomyosin expression correlated with the onset of morphological transformation. We found that the reversal of Ras transformation caused by inhibition of extracellular signal-regulated kinase activation corresponded to a restoration of tropomyosin expression. Inhibition of p38 activity in Raf-expressing RIE-1 cells caused both morphological transformation and loss of tropomyosin expression. Thus, a reduction in tropomyosin expression correlated strictly with morphological transformation of RIE-1 cells. However, forced overexpression of tropomyosin in Ras-transformed cells did not reverse morphological or growth transformation, a finding consistent with the possibility that multiple changes in gene expression contribute to Ras transformation. We also determined that tropomyosin expression was low in two human tumor cell lines, DLD-1 and HT1080, that harbor endogenous mutated alleles of ras, but high in transformation-impaired, derivative cell lines in which the mutant ras allele has been genetically deleted. Finally, treatment with azadeoxycytidine restored tropomyosin expression in Ras-transformed RIE-1, HT1080, and DLD-1 cells, suggesting a role for DNA methylation in downregulating tropomyosin expression. 相似文献
7.
Ambrosino C Mace G Galban S Fritsch C Vintersten K Black E Gorospe M Nebreda AR 《Molecular and cellular biology》2003,23(1):370-381
p38 mitogen-activated protein (MAP) kinases play an important role in the regulation of cellular responses to all kinds of stresses. The most abundant and broadly expressed p38 MAP kinase is p38alpha, which can also control the proliferation, differentiation, and survival of several cell types. Here we show that the absence of p38alpha correlates with the up-regulation of one of its upstream activators, the MAP kinase kinase MKK6, in p38alpha(-/-) knockout mice and in cultured cells derived from them. In contrast, the expression levels of the p38 activators MKK3 and MKK4 are not affected in p38alpha-deficient cells. The increase in MKK6 protein concentration correlates with increased amounts of MKK6 mRNA in the p38alpha(-/-) cells. Pharmacological inhibition of p38alpha also up-regulates MKK6 mRNA levels in HEK293 cells. Conversely, reintroduction of p38alpha into p38alpha(-/-) cells reduces the levels of MKK6 protein and mRNA to the normal levels found in wild-type cells. Moreover, we show that the MKK6 mRNA is more stable in p38alpha(-/-) cells and that the 3'untranslated region of this mRNA can differentially regulate the stability of the lacZ reporter gene in a p38alpha-dependent manner. Our data indicate that p38alpha can negatively regulate the stability of the MKK6 mRNA and thus control the steady-state concentration of one of its upstream activators. 相似文献
8.
9.
10.
11.
《Microbes and infection / Institut Pasteur》2014,16(5):401-408
Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To elucidate the mechanisms involved, we investigated the role of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (p38) pathways in cytokine expression, phagosome–lysosome fusion and replication of P. marneffei in P. marneffei-infected human macrophages. Analysis of both ERK1/2 and p38 showed rapid phosphorylation in response to P. marneffei. Using specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that ERK1/2 and p38 were essential for P. marneffei-induced tumor necrosis factor-α production, whereas p38, but not that of ERK, was essential for IL-10 production. Furthermore, the presence of PD98059 always decreased phagosomal acidification and maturation and increased intracellular multiplication of P. marneffei, whereas the use of SB203580 always increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that a proper balance of between ERK1/2 and p38 may play an important role in controlling the replication of P. marneffei. Our findings further indicate a novel therapeutic avenue for treating P. marneffei by stimulating ERK1/2 or activating ERK1/2-dependent mechanisms. 相似文献
12.
Ye J Zeidler P Young SH Martinez A Robinson VA Jones W Baron P Shi X Castranova V 《The Journal of biological chemistry》2001,276(7):5360-5367
13.
Liu Enli Shi Shasha Li Jie Ge Rui Liang Taigang Li Qingshan 《Molecular and cellular biochemistry》2020,475(1-2):249-260
Molecular and Cellular Biochemistry - Farrerol, a dihydroflavone isolated from Rhododendron dauricum L., can inhibit vascular smooth muscle cell (VSMC) proliferation and exert a protective effect... 相似文献
14.
Awad MM Enslen H Boylan JM Davis RJ Gruppuso PA 《The Journal of biological chemistry》2000,275(49):38716-38721
During normal development in the rat, hepatocytes undergo marked changes in the rate of proliferation. We have previously observed transient G(1) growth arrest at term, re-activation of proliferation immediately after birth, and a gradual transition to the quiescent adult hepatocyte phenotype after postnatal day 4. We hypothesized that these changes in proliferation are due in part to growth inhibitory effects mediated by the p38 mitogen-activated protein kinase pathway. p38 kinase activity measurements showed an inverse relationship with hepatocyte proliferation during the perinatal and postnatal transitions, whereas p38 content remained constant. Anisomycin activated the p38 pathway in fetal hepatocyte cultures while inducing growth inhibition that was sensitive to the p38 inhibitor, SB203580. Activation of p38 in these cultures, via transient transfection with a constitutively active form of its upstream kinase MKK6, also inhibited DNA synthesis as well as reducing cyclin D1 content. Transfection with inactive MKK6 did neither. Furthermore, MKK6-induced growth arrest was sensitive to SB203580. Finally, administration of SB203580 to near-term fetal rats in utero abrogated the transient hepatocyte growth arrest that occurs at term. These findings indicate a role for the p38 mitogen-activated protein kinase pathway in the physiological regulation of hepatocyte proliferation during normal development in the rat. 相似文献
15.
Lai WC Zhou M Shankavaram U Peng G Wahl LM 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(12):6244-6249
16.
The mitogen-activated protein kinases (MAP kinases), extracellular signal-regulated kinase (ERK) and p38, can both contribute to the activation of cytosolic phospholipase A2 (cPLA2). We have investigated the hypothesis that ERK and p38 together or independent of one another play roles in the regulation of cPLA2 in macrophages responding to the oral bacterium Prevotella intermedia or zymosan. Stimulation with bacteria or zymosan beads caused arachidonate release and enhanced in vitro cPLA2 activity of cell lysate by 1.5- and 1.7-fold, respectively, as well as activation of ERK and p38. The specific inhibitor of MAP kinase kinase, PD 98059, and the inhibitor of p38, SB 203580, both partially inhibited cPLA2 activation and arachidonate release induced by bacteria and zymosan. Together, the two inhibitors had additive effects and completely blocked cPLA2 activation and arachidonate release. The present results demonstrate that ERK and p38 both have important roles in the regulation of cPLA2 and together account for its activation in P. intermedia and zymosan-stimulated mouse macrophages. 相似文献
17.
18.
The dual specificity mitogen-activated protein kinase phosphatase MKP3 has been shown to down-regulate mitogenic signaling through dephosphorylation of extracellular signal-regulated kinase (ERK). Camps et al. (Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S. (1998) Science 280, 1262-1265) had demonstrated that ERK binding to the noncatalytic amino-terminal domain of MKP3 can dramatically activate the phosphatase catalytic domain. The physical basis for this activation has not been established. Here, we provide detailed biochemical evidence that ERK activates MKP3 through the stabilization of the active phosphatase conformation, inducing closure of the catalytic "general acid" loop. In the closed conformation, this loop structure can participate efficiently in general acid/base catalysis, substrate binding, and transition-state stabilization. The pH activity profiles of ERK-activated MKP3 clearly indicated the involvement of general acid catalysis, a hallmark of protein-tyrosine phosphatase catalysis. In contrast, unactivated MKP3 did not display this enzymatic group as critical for the low activity form of the enzyme. Using a combination of Br?nsted analyses, pre-steady-state and steady-state kinetics, we have isolated all catalytic steps in the reaction and have quantified the specific rate enhancement. Through protonation of the leaving group and transition-state stabilization, activated MKP3 catalyzes formation of the phosphoenzyme intermediate approximately 100-fold faster than unactivated enzyme. In addition, ERK-activated MKP3 catalyzes intermediate hydrolysis 5-6-fold more efficiently and binds ligands up to 19-fold more tightly. Consistent with ERK stabilizing the active conformation of MKP3, the chemical chaperone dimethyl sulfoxide was able to mimic this activation. A general protein-tyrosine phosphatase regulatory mechanism involving the flexible general acid loop is discussed. 相似文献
19.
20.
Ashida K Goto K Zhao Y Okabe T Yanase T Takayanagi R Nomura M Nawata H 《Biochimica et biophysica acta》2005,1728(1-2):84-94
Dehydroepiandrosterone-sulfate, the sulfated form of dehydroepiandrosterone, is the most abundant steroid in young adults, but gradually declines with aging. In humans, the clinical application of dehydroepiandrosterone targeting some collagen diseases, such as systemic lupus erythematosus, as an adjunctive treatment has been applied in clinical trial. Here, we report that dehydroepiandrosterone may negatively regulate the mitogen-activated protein kinase pathway in humans via a novel dual specificity protein phosphatase, DDSP (dehydroepiandrosterone-enhanced dual specificity protein phosphatase). DDSP is highly homologous to LCPTP/HePTP, a tissue-specific protein tyrosine phosphatase (PTP) which negatively regulates both ERK and p38-mitogen-activated protein kinase, and is transcribed from the PTPN7 locus by alternative splicing. Although previous reports have shown that the mRNA expression of the LCPTP/HePTP gene was inducible by extracellular signals such as T-cell antigen receptor stimulation, reverse transcribed (RT)-PCR experiments using specific sets of primers suggested that the expression of LCPTP/HePTP was constitutive while the actual inducible sequence was that of DDSP. Furthermore DDSP was widely distributed among different types of human tissues and specifically interacted with p38-mitogen-activated protein kinase. This inducible negative regulation of the p38-mitogen-activated protein kinase-dependent pathway may help to clarify the broad range of dehydroepiandrosterone actions, thereby aiding the development of new preventive or adjunctive applications for human diseases. 相似文献