首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied heritability of the concentration of each glycolytic intermediate and adenine nucleotide in the cytosol of human erythrocytes obtained from a random sample of apparently healthy young individuals. Preliminary to analysis of heritability, each trait was statistically described and the effects attributable to variation in measured concomitants were removed by regression. Heritability was estimated using the family-set method. This method removes covariances between the index case, sibling and first cousin, due to those environmental determinants of the phenotypic values that are shared with a matched, unrelated control member of the family set. It also removes covariances due to environments that are shared by siblings and first cousins. Heritability was estimated by employing the fact that the variance of differences between first cousins minus the variance of differences between full siblings estimates three-fourths of the additive genetic variance. The heritability estimates for G6P†, F6P, ATP and some other metabolite concentrations are high and significantly greater than zero. The heritabilities of G6P and F6P are likely attributable to genetic variation in the in vivo activity of HK and/or PFK, because the concentrations of these metabolites are tightly controlled by the two regulatory enzymes. Statistically significant heritability estimates for HK and PFK mass action ratios strongly suggest genes are responsible for a portion of the quantitative variation in these enzyme activities. Since HK and PFK regulate glycolysis and the production of ATP, genetic variation in their activities might be causally related to the heritability of ATP concentration.  相似文献   

2.
A major component of variation in body height is due to genetic differences, but environmental factors have a substantial contributory effect. In this study we aimed to analyse whether the genetic architecture of body height varies between affluent western societies. We analysed twin data from eight countries comprising 30,111 complete twin pairs by using the univariate genetic model of the Mx statistical package. Body height and zygosity were self-reported in seven populations and measured directly in one population. We found that there was substantial variation in mean body height between countries; body height was least in Italy (177 cm in men and 163 cm in women) and greatest in the Netherlands (184 cm and 171 cm, respectively). In men there was no corresponding variation in heritability of body height, heritability estimates ranging from 0.87 to 0.93 in populations under an additive genes/unique environment (AE) model. Among women the heritability estimates were generally lower than among men with greater variation between countries, ranging from 0.68 to 0.84 when an additive genes/shared environment/unique environment (ACE) model was used. In four populations where an AE model fit equally well or better, heritability ranged from 0.89 to 0.93. This difference between the sexes was mainly due to the effect of the shared environmental component of variance, which appears to be more important among women than among men in our study populations. Our results indicate that, in general, there are only minor differences in the genetic architecture of height between affluent Caucasian populations, especially among men.  相似文献   

3.
The role of genetic and environmental factors on dental asymmetry (in maximum crown dimensions) was examined using 58 pairs of twins (23 MZ and 35 DZ) from Chandigarh, India. The t'-test for equality of means by zygosity showed only one variable significantly different among 56: this is ascribable to Type 1 error. Heterogeneity of MZ-DZ total variance was observed in 42.9% of traits of the two types (fluctuating and directional) of bilateral asymmetry. In general, MZ twins showed higher total variance than DZ pairs. MZ twins also showed stronger environmental covariance for a majority of the traits. Dental asymmetry measures thus yielded consistently low genetic variance ratios and indicated predominantly complex environmental determinism. Since fluctuating asymmetry is widely believed to be an environmental stress indicator, this data set allows confirmation of methods for detecting unequal environmental influences on the zygosities which bias estimates of genetic variance and heritability.  相似文献   

4.
Social structure, limited dispersal, and spatial heterogeneity in resources are ubiquitous in wild vertebrate populations. As a result, relatives share environments as well as genes, and environmental and genetic sources of similarity between individuals are potentially confounded. Quantitative genetic studies in the wild therefore typically account for easily captured shared environmental effects (e.g., parent, nest, or region). Fine-scale spatial effects are likely to be just as important in wild vertebrates, but have been largely ignored. We used data from wild red deer to build "animal models" to estimate additive genetic variance and heritability in four female traits (spring and rut home range size, offspring birth weight, and lifetime breeding success). We then, separately, incorporated spatial autocorrelation and a matrix of home range overlap into these models to estimate the effect of location or shared habitat on phenotypic variation. These terms explained a substantial amount of variation in all traits and their inclusion resulted in reductions in heritability estimates, up to an order of magnitude up for home range size. Our results highlight the potential of multiple covariance matrices to dissect environmental, social, and genetic contributions to phenotypic variation, and the importance of considering fine-scale spatial processes in quantitative genetic studies.  相似文献   

5.
A marker-based method for studying quantitative genetic characters in natural populations is presented and evaluated. The method involves regressing quantitative trait similarity on marker-estimated relatedness between individuals. A procedure is first given for estimating the narrow sense heritability and additive genetic correlations among traits, incorporating shared environments. Estimation of the actual variance of relatedness is required for heritability, but not for genetic correlations. The approach is then extended to include isolation by distance of environments, dominance, and shared levels of inbreeding. Investigations of statistical properties show that good estimates do not require great marker polymorphism, but rather require significant variation of actual relatedness; optimal allocation generally favors sampling many individuals at the expense of assaying fewer marker loci; when relatedness declines with physical distance, it is optimal to restrict comparisons to within a certain distance; the power to estimate shared environments and inbreeding effects is reasonable, but estimates of dominance variance may be difficult under certain patterns of relationship; and any linkage of markers to quantitative trait loci does not cause significant problems. This marker-based method makes possible studies with long-lived organisms or with organisms difficult to culture, and opens the possibility that quantitative trait expression in natural environments can be analyzed in an unmanipulative way.  相似文献   

6.
The heritability estimates of 25 external morphometric characters and 23 craniometric indices are obtained by use of variances in monoclonal all-female triploids and bisexual tetraploids of spined loaches (genus Cobitis, Cobitidae) collected from the same breeding biotope. Most of studied traits demonstrate low heritability confirming previous conclusion on the similarity between external morphometric characters and craniological indices in relative effects of genetic and environmental components in their total phenotypic variation. Low heritability estimates in most of external morphological traits correspond to their low diagnostic value in Cobitis species. As a whole, in spite of certain deviations, studies on clonal forms do not refute the concept on higher heritability estimates in diagnostically significant traits in comparison with traits without diagnostic values in the same taxonomic group. Low heritability in most morphometric traits more probably is resulted from their low additive genetic variation caused by strong selection of evolutionary developed specific body shape in spined loaches, because strong selection should reduce the genetic variance in body proportions to minimal size. Sex differences observed in heritability estimates should be interpreted as a result of linkage of several additive genes controlling these traits to sex chromosomes. A few characters demonstrating high heritability estimates up to 0.492–0.580 are of great interest for taxonomic and phylogenetic studies in genus Cobitis and related taxa.  相似文献   

7.
The presence of heritable variation in traits is a prerequisite for evolution. The great majority of heritability (h2) estimates are performed under laboratory conditions that are characterized by low levels of environmental variability. Very little is known about the effect of environmental variability on the estimation of components of quantitative variation, although theoretical extrapolations from lab studies have been attempted. Here we investigate the effects of environmental heterogeneity on variance component estimation using full-sib families of Gryllus pennsylvanicus split between a homogeneous laboratory environment and a more variable field environment. Although large standard errors prevent demonstration of statistically significant differences among h2 of traits measured in the two environments for all but one trait, the values of h2 are, on average, lower in the variable field environment, with a mean reduction of 19%. Developmental time is an exception, exhibiting high levels of additive variance in the field, leading to a higher value of h2 in the variable environment. Underlying the lower field h2 estimates are greater components of environmental variance as expected, as well as lower components of genetic variance. In this study, there is no evidence that the increase in the environmental component of variance in the field is any more important in the reduction of h2 than is the decrease in the additive genetic component. The implications of the relative changes in the two components of variance are discussed.  相似文献   

8.
Describing and quantifying animal personality is now an integral part of behavioural studies because individually distinctive behaviours have ecological and evolutionary consequences. Yet, to fully understand how personality traits may respond to selection, one must understand the underlying heritability and genetic correlations between traits. Previous studies have reported a moderate degree of heritability of personality traits, but few of these studies have either been conducted in the wild or estimated the genetic correlations between personality traits. Estimating the additive genetic variance and covariance in the wild is crucial to understand the evolutionary potential of behavioural traits. Enhanced environmental variation could reduce heritability and genetic correlations, thus leading to different evolutionary predictions. We estimated the additive genetic variance and covariance of docility in the trap, sociability (mirror image stimulation), and exploration and activity in two different contexts (open‐field and mirror image simulation experiments) in a wild population of yellow‐bellied marmots (Marmota flaviventris). We estimated both heritability of behaviours and of personality traits and found nonzero additive genetic variance in these traits. We also found nonzero maternal, permanent environment and year effects. Finally, we found four phenotypic correlations between traits, and one positive genetic correlation between activity in the open‐field test and sociability. We also found permanent environment correlations between activity in both tests and docility and exploration in the MIS test. This is one of a handful of studies to adopt a quantitative genetic approach to explain variation in personality traits in the wild and, thus, provides important insights into the potential variance available for selection.  相似文献   

9.
On the heritability of serum high density lipoprotein in twins.   总被引:4,自引:3,他引:1       下载免费PDF全文
To estimate the relative contributions of hereditary vs. environmental factors in the variation of high density lipoprotein, we measured the concentrations of its main apoprotein components, apoprotein A-I (apo A-I) and apoprotein A-II (apo A-II), in serum samples from 65 monozygotic (MZ) and 70 dizygotic (DZ) like-sexed twin pairs. Evidence for a genetic component of variance was found for apo A-II, giving heritability (h2) estimates of .35 and .30 for males and females, respectively. No genetic contribution to the variance of apo A-I could be demonstrated. Additionally, males had lower concentrations of apo A-I, but higher of apo A-II, than females.  相似文献   

10.
Uller T  Olsson M  Ståhlberg F 《Heredity》2002,88(6):480-484
Heritability characteristically shows large variation between traits, among populations and species, and through time. One of the reasons for this is its dependence on gene frequencies and how these are altered by selection and drift through the evolutionary process. We studied variation in heritability of tadpole growth rate in populations of the Swedish common frog, Rana temporaria. In populations evolving under warmer conditions, we have demonstrated elsewhere that tadpoles show better growth and physiological performance at relatively higher temperatures than tadpoles with an evolutionary history in a relatively cooler part of the distribution range. In the current study, we ask whether this process of divergence under natural selection has influenced the genetic architecture as visualised in estimates of heritability of growth rate at different temperature treatments under laboratory conditions. The results suggest that the additive genetic variance varies between treatments and is highest in a treatment that is common to both populations. Our estimates of narrow sense heritability are generally higher in the thermal regime that dominates in the natural environment. The reason for this appears not primarily to be because the component of additive genetic variation is higher in relation to the total phenotypic variation under these conditions, but because the part of the phenotypic variance explained by environmental variation increases at temperatures to which the current populations has been less frequently under selection.  相似文献   

11.
Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities.  相似文献   

12.
The existence of additive genetic variance in developmental stability has important implications for our understanding of morphological variation. The heritability of individual fluctuating asymmetry and other measures of developmental stability have frequently been estimated from parent-offspring regressions, sib analyses, or from selection experiments. Here we review by meta-analysis published estimates of the heritability of developmental stability, mainly the degree of individual fluctuating asymmetry in morphological characters. The overall mean effect size of heritabilities of individual fluctuating asymmetry was 0.19 from 34 studies of 17 species differing highly significantly from zero (P < 0.0001). The mean heritability for 14 species was 0.27. This indicates that there is a significant additive genetic component to developmental stability. Effect size was larger for selection experiments than for studies based on parent-offspring regression or sib analyses, implying that genetic estimates were unbiased by maternal or common environment effects. Additive genetic coefficients of variation for individual fluctuating asymmetry were considerably higher than those for character size per se. Developmental stability may be significantly heritable either because of strong directional selection, or fluctuating selection regimes which prevent populations from achieving a high degree of developmental stability to current environmental and genetic conditions.  相似文献   

13.
The study of adaptive genetic variation in natural populations is central to evolutionary biology. Quantitative genetics methods, however, are hardly applicable to long-lived organisms, and current knowledge on adaptive genetic variation in wild plants mostly refers to annuals and short-lived perennials. Studies on long-lived species are essential to explore possible life-history correlates of genetic variation, selection, and trait heritability. In this paper, we propose a method based on molecular markers to quantify the genetic basis of individual phenotypic differences in wild plants under natural conditions. Rather than focusing on inferring individual relatedness to estimate the heritability of phenotypic traits, we directly estimate the proportion of observed phenotypic variance that is statistically accounted for by genotypic differences between individuals. This is achieved by (i) identifying loci that are correlated across individuals with the phenotypic trait of interest by means of an amplified fragment length polymorphism (AFLP)-based explorative genomic scan, and (ii) fitting multiple regression and linear random effect models to estimate the effects of genotype, environment and genotype × environment on phenotypes. We apply this method to estimate genotypic and environmental effects on cumulative maternal fecundity in a wild population of the long-lived Viola cazorlensis monitored for 20 years. Results show that between 56–63% (depending on estimation method) of phenotypic variance in fecundity is accounted for by genotypic differences in 11 AFLP loci that are significantly related to fecundity. Genotype × environment effects accounted for 38% of fecundity variance, which may help to explain the unexpectedly high levels of genetic variance for fecundity found.  相似文献   

14.
Laboratory experiments on Drosophila have often demonstrated increased heritability for morphological and life‐history traits under environmental stress. We used parent–offspring comparisons to examine the impact of humidity levels on the heritability of a physiological trait, resistance to heat, measured as knockdown time at constant temperature. Drosophila melanogaster were reared under standard nonstressful conditions and heat‐shocked as adults at extreme high or low humidity. Mean knockdown time was decreased in the stressful dry environment, but there was a significant sex‐by‐treatment interaction: at low humidity, females were more heat resistant than males, whereas at high humidity, the situation was reversed. Phenotypic variability of knockdown time was also lower in the dry environment. The magnitude of genetic correlation between the sexes at high humidity indicated genetic variation for sexual dimorphism in heat resistance. Heritability estimates based on one‐parent–offspring regressions tended to be higher under desiccation stress, and this could be explained by decreased environmental variance of heat resistance at low humidity. There was no indication that the additive genetic variance and evolvability of heat resistance differed between the environments. The pattern of heritability estimates suggests that populations of D. melanogaster may have a greater potential for evolving higher thermal tolerance under arid conditions.  相似文献   

15.
Although genetic variation in characters closely related to fitness is expected to either become depleted by selection or masked by environmental variation, “good gene” models of sexual selection require moderate to high heritabilities of secondary sexual characters to explain the occurrence of costly female mate preferences. In this study, I investigated whether the estimated heritability of a condition-dependent secondary sexual character (i.e., the white forehead badge) in the collared flycatcher varied depending on environmental conditions experienced during offspring growth. The data were collected over a period of 14 years making it possible to exploit natural variation in natal conditions. In addition, natal conditions were experimentally altered through brood size manipulations. During unfavorable conditions caused by generally poor weather or experimentally enlarged brood size, no significant heritability based on father-sons regressions could be demonstrated (0.19 ? h2 ? 0.27). In contrast, sons reared during years with favorable weather or in experimentally reduced broods significantly resembled their fathers (0.44 ? h2 ? 0.65). In addition, the heritability estimates declined with increasing maternal age. The strong effect of natal environmental condition on the estimated heritability of forehead badge size suggests that the potential genetic benefit from mate choice vary according to environmental conditions (e.g., the benefit is reduced during unfavorable rearing conditions). Because sons reared during poor conditions have probably experienced a natal environment different from that experienced by their fathers, the low heritability estimates obtained under poor conditions seem to be caused by low additive genetic variation expressed in such environments and/or a low genetic correlation between the expression of the trait in the two different environments (i.e., good vs. bad). Both of these explanations imply the presence of genotype-by-environment interactions. If such interactions frequently affect the expression of secondary sexual characters, this may offer an explanation of the high heritabilites sometimes reported for such traits, despite their exposure to long-term directional selection.  相似文献   

16.
Typically twin studies are used to investigate the aggregate effects of genetic and environmental influences on brain phenotypic measures. Although some phenotypic measures are highly heritable in twin studies, SNPs (single nucleotide polymorphisms) identified by genome-wide association studies (GWAS) account for only a small fraction of the heritability of these measures. We mapped the genetic variation (the proportion of phenotypic variance explained by variation among SNPs) of volumes of pre-defined regions across the whole brain, as explained by 512,905 SNPs genotyped on 747 adult participants from the Alzheimer''s Disease Neuroimaging Initiative (ADNI). We found that 85% of the variance of intracranial volume (ICV) (p = 0.04) was explained by considering all SNPs simultaneously, and after adjusting for ICV, total grey matter (GM) and white matter (WM) volumes had genetic variation estimates near zero (p = 0.5). We found varying estimates of genetic variation across 93 non-overlapping regions, with asymmetry in estimates between the left and right cerebral hemispheres. Several regions reported in previous studies to be related to Alzheimer''s disease progression were estimated to have a large proportion of volumetric variance explained by the SNPs.  相似文献   

17.
Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as ‘animal personality’. Personality differences can arise, for example, from differences in permanent environmental effects―including parental and epigenetic contributors―and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified.  相似文献   

18.
Genetic variances, heritabilities, and genetic correlations of floral traits were measured in the monocarpic perennial Ipomopsis aggregata (Polemoniaceae). A paternal half-sib design was employed to generate seeds in each of four years, and seeds were planted back in the field near the parental site. The progeny were followed for up to eight years to estimate quantitative genetic parameters subject to natural levels of environmental variation over the entire life cycle. Narrow-sense heritabilities of 0.2–0.8 were detected for the morphometric traits of corolla length, corolla width, stigma position, and anther position. The proportion of time spent by the protandrous flowers in the pistillate phase (“proportion pistillate”) also exhibited detectable heritability of near 0.3. In contrast, heritability estimates for nectar reward traits were low and not significantly different from zero, due to high environmental variance between and within flowering years. The estimates of genetic parameters were combined with phenotypic selection gradients to predict evolutionary responses to selection mediated by the hummingbird pollinators. One trait, corolla width, showed the potential for a rapid response to ongoing selection through male function, as it experienced both direct selection, by influencing pollen export, and relatively high heritability. Predicted responses were lower for proportion pistillate and corolla length, even though these traits also experienced direct selection. Stigma position was expected to respond positively to indirect selection of proportion pistillate but negatively to selection of corolla length, with the net effect sensitive to variation in the selection estimates. Anther position also was not directly selected but could respond to indirect selection of genetically correlated traits.  相似文献   

19.
A method for partitioning genetic variance estimated from twin data into additive and dominance variances was presented using Falconer's variance component model. The effects of dominance and environmental variances on a number of heritability estimates were also reviewed. A heritability estimate, based on the analysis of variance and the genetic variance estimates presented by HASEMAN and ELSTON and CHRISTIAN et al. which utilizes all available information from twin data, was proposed and discussed. This estimate seems to be the least affected by fluctuations in the magnitudes of dominance and environmental variances.  相似文献   

20.
Longitudinal as well as cross-sectional studies have shown variations with age in heritability estimates for body dimensions from infancy to adulthood, even though the patterns of variation are not completely clear. Further study on this subject is of great interest and may help obesity interventions for preventing or treating obesity in children. Therefore, the aim of the present study is to analyse the changes in the genetic and environmental architecture of 8 body linearity and obesity-related phenotypes during the growth process in a cross-sectional sample of 1018 nuclear families from the province of Biscay (Basque Country, Spain). The contribution of additive genetic effects to the variation of the analysed traits was estimated by a variance component analysis using the SOLAR program. Moderate to high heritability estimates were obtained for all 8 anthropometric phenotypes (38.23–65.98%). The heritability values show an increasing trend with age and in the course of the entire ontogenetic development two age periods were remarkable. At 7+–8+ years of age a strong increase in heritability estimates was found for all the anthropometric phenotypes, except for the sum of skinfolds (SF6), reflecting the biological significance of genes during mid-childhood. During puberty, most of the obesity related phenotypes showed their highest heritability values while linear measurements and weight presented a decrease in the genetic contributions. In conclusion, this study confirms that additive genetic influences have a considerable effect on body linearity and obesity-related traits throughout the growth period and that mid-childhood and puberty are very sensitive periods in human life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号