首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Differential network analysis provides a framework for examining if there is sufficient statistical evidence to conclude that the structure of a network differs under two experimental conditions or if the structures of two networks are different. The R package dna provides tools and procedures for differential network analysis of genomic data. The focus of this package is on gene-gene networks, but the methods are easily adaptable for more general biological processes. This package includes preprocessing tools for simultaneously preparing a pair of networks for analysis, procedures for computing connectivity scores between pairs of genes based on many available statistical techniques, and tools for handling modules of genes based on these scores. Also, procedures are provided for performing permutation tests based on these scores to determine if the connectivity of a gene differs between the two networks, to determine if the connectivity of a particular set of important genes differs between the two networks, and to determine if the overall module structure differs between the two networks. Several built-in options are available for the types of scores and distances used in the testing procedures, and additionally, the procedures provide flexible methods that allow the user to define custom scores and distances.

Availability

dna is freely available at The Comprehensive R Archive Network, http://CRAN.R-project.org/package=dna  相似文献   

2.
A large number of computational methods have been developed for analyzing differential gene expression in RNA-seq data. We describe a comprehensive evaluation of common methods using the SEQC benchmark dataset and ENCODE data. We consider a number of key features, including normalization, accuracy of differential expression detection and differential expression analysis when one condition has no detectable expression. We find significant differences among the methods, but note that array-based methods adapted to RNA-seq data perform comparably to methods designed for RNA-seq. Our results demonstrate that increasing the number of replicate samples significantly improves detection power over increased sequencing depth.  相似文献   

3.
4.
SUMMARY: SScore is an R package that facilitates the comparison of gene expression between Affymetrix GeneChips using the S-score algorithm. The S-score algorithm uses probe level data directly to assess differences in gene expression, without requiring a preliminary separate step of probe set expression summary estimation. Therefore, the algorithm avoids introduction of error associated with the expression summary estimation process and has been demonstrated to improve the accuracy of identifying differentially expressed genes. The S-score produces accurate results even when few or no replicates are available. AVAILABILITY: The R package SScore is available from Bioconductor at http://www.bioconductor.org  相似文献   

5.

Background

Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and compared their results with sequencing corresponding individual RNA samples.

Results

False-positivity rate of Cuffdiff2 and false-negativity rates of DESeq2 and TSPM were high. Among the four investigated DEG analysis methods, sensitivity and specificity of edgeR was relatively high. We documented the pooling bias and that the DEGs identified in pooled samples suffered low positive predictive values.

Conclusions

Our results highlighted the need for combined use of more sensitive DEG analysis methods and high-throughput validation of identified DEGs in future RNA-seq experiments. They indicated limited utility of sample pooling strategies for RNA-seq in similar setups and supported increasing the number of biological replicate samples.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1767-y) contains supplementary material, which is available to authorized users.  相似文献   

6.
《Genomics》2021,113(3):1308-1324
Single-cell RNA sequencing (scRNA-seq) is a powerful technology that is capable of generating gene expression data at the resolution of individual cell. The scRNA-seq data is characterized by the presence of dropout events, which severely bias the results if they remain unaddressed. There are limited Differential Expression (DE) approaches which consider the biological processes, which lead to dropout events, in the modeling process. So, we develop, SwarnSeq, an improved method for DE, and other downstream analysis that considers the molecular capture process in scRNA-seq data modeling. The performance of the proposed method is benchmarked with 11 existing methods on 10 different real scRNA-seq datasets under three comparison settings. We demonstrate that SwarnSeq method has improved performance over the 11 existing methods. This improvement is consistently observed across several public scRNA-seq datasets generated using different scRNA-seq protocols. The external spike-ins data can be used in the SwarnSeq method to enhance its performance.Availability and implementationThe method is implemented as a publicly available R package available at https://github.com/sam-uofl/SwarnSeq.  相似文献   

7.
8.
Annotating cell types is a critical step in single-cell RNA sequencing(scRNA-seq) data analysis. Some supervised or semi-supervised classification methods have recently emerged to enable automated cell type identification. However, comprehensive evaluations of these methods are lacking. Moreover, it is not clear whether some classification methods originally designed for analyzing other bulk omics data are adaptable to scRNA-seq analysis. In this study, we evaluated ten cell type annotation methods publicly available as R packages. Eight of them are popular methods developed specifically for single-cell research, including Seurat, scmap, SingleR, CHETAH, SingleCellNet, scID, Garnett, and SCINA. The other two methods were repurposed from deconvoluting DNA methylation data, i.e., linear constrained projection(CP) and robust partial correlations(RPC). We conducted systematic comparisons on a wide variety of public scRNA-seq datasets as well as simulation data. We assessed the accuracy through intra-dataset and inter-dataset predictions; the robustness over practical challenges such as gene filtering, high similarity among cell types, and increased cell type classes; as well as the detection of rare and unknown cell types. Overall, methods such as Seurat, SingleR, CP, RPC, and SingleCellNet performed well, with Seurat being the best at annotating major cell types. Additionally, Seurat, SingleR, CP, and RPC were more robust against downsampling. However, Seurat did have a major drawback at predicting rare cell populations, and it was suboptimal at differentiating cell types highly similar to each other,compared to SingleR and RPC. All the code and data are available from https://github.com/qianhuiSenn/scRNA_cell_deconv_benchmark.  相似文献   

9.
MOTIVATION: Microarray-based expression profiles have become a standard methodology in any high-throughput analysis. Several commercial platforms are available, each with its strengths and weaknesses. The R platform for statistical analysis and graphics is a powerful environment for the analysis of microarray data, because it has many integrated statistical methods available as well as the specialized microarray analysis project Bioconductor. Many packages have been added in the last few years increasing the range of possible analysis. Here, we report the availability of a package for reading and analyzing data from GE Healthcare Gene Expression Bioarrays within the R environment. AVAILABILITY: The software is implemented in the R language, is open source and available for download free of charge through the Bioconductor (http://www.bioconductor.org) project.  相似文献   

10.
MADE4: an R package for multivariate analysis of gene expression data   总被引:2,自引:0,他引:2  
SUMMARY: MADE4, microarray ade4, is a software package that facilitates multivariate analysis of microarray gene-expression data. MADE4 accepts a wide variety of gene-expression data formats. MADE4 takes advantage of the extensive multivariate statistical and graphical functions in the R package ade4, extending these for application to microarray data. In addition, MADE4 provides new graphical and visualization tools that aid in interpretation of multivariate analysis of microarray data.  相似文献   

11.

Background  

The variety of DNA microarray formats and datasets presently available offers an unprecedented opportunity to perform insightful comparisons of heterogeneous data. Cross-species studies, in particular, have the power of identifying conserved, functionally important molecular processes. Validation of discoveries can now often be performed in readily available public data which frequently requires cross-platform studies.  相似文献   

12.
SUMMARY: Gene Ontology (GO) annotations have become a major tool for analysis of genome-scale experiments. We have created OntologyTraverser--an R package for GO analysis of gene lists. Our system is a major advance over previous work because (1) the system can be installed as an R package, (2) the system uses Java to instantiate the GO structure and the SJava system to integrate R and Java and (3) the system is also deployed as a publicly available web tool. AVAILABILITY: Our software is academically available through http://franklin.imgen.bcm.tmc.edu/OntologyTraverser/. Both the R package and the web tool are accessible. CONTACT: cashaw@bcm.tmc.edu  相似文献   

13.
14.
15.
An R package for analysis of whole-genome association studies   总被引:3,自引:0,他引:3  
OBJECTIVE: To provide data classes and methods to facilitate the analysis of whole genome association studies in the R language for statistical computing. METHODS: We have implemented data classes in which each genotype call is stored as a single byte. At this density, data for single chromosomes derived from large studies and new high-throughput gene chip platforms can be handled in memory. We use the object-oriented programming model introduced with version 4 of the S-plus package, usually termed 'S4 methods'. RESULTS: At the current state of development the package only supports population-based studies, although we would hope to provide support for family-based studies soon. Both quantitative and qualitative phenotypes may be analysed. Flexible association testing functions are provided which can carry out single SNP tests which control for potential confounding by quantitative and qualitative covariates. Tests involving several SNPs taken together as 'tags' are also supported. Efficient calculation of pair-wise linkage disequilibrium measures is implemented and data input functions include a function which can download data directly from the international HapMap project website.  相似文献   

16.
TEQC is an R/Bioconductor package for quality assessment of target enrichment experiments. Quality measures comprise specificity and sensitivity of the capture, enrichment, per-target read coverage and its relation to hybridization probe characteristics, coverage uniformity and reproducibility, and read duplicate analysis. Several diagnostic plots allow visual inspection of the data quality. AVAILABILITY AND IMPLEMENTATION: TEQC is implemented in the R language (version >2.12.0) and is available as a Bioconductor package for Linux, Windows and MacOS from www.bioconductor.org.  相似文献   

17.
18.
19.
正The past two decades have witnessed a revolution in identifying genetic risk factors underlying diseases and complex traits using genome-wide association studies(GWAS)(Risch and Merikangas,1996;Hirschhorn and Daly,2005;Altshuler et al.,2008).Together with advanced high-throughput technologies for genotyping and  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号