首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capsule: The fifth UK and the Isle of Man survey of Hen Harrier in 2016 showed varying trends by country and region.

Aim: To estimate the size of the breeding Hen Harrier population (with associated 95% confidence intervals) in the UK and Isle of Man, constituent countries and Scottish regions, in 2016 and calculate population change over the five surveys to date.

Methods: Complete surveys were made of all 10-km squares likely to be occupied by breeding Hen Harriers in England, Wales, Northern Ireland and the Isle of Man, using standard methods developed for previous national surveys. In Scotland, self-selected 10-km squares were surveyed by volunteers and a stratified random selection of the remaining 10-km squares within the known breeding range was surveyed.

Results: The UK and Isle of Man Hen Harrier population was estimated at 575 territorial pairs (95% confidence limits, 477–694), a non-significant decline of 13% since 2010 but a significant decline of 24% since 2004. Scotland held the majority (80%) of the population with 460 (359–573) territorial pairs. Elsewhere, 46 territorial pairs were recorded in Northern Ireland, 35 in Wales, 30 in the Isle of Man and four in England. Significant decreases were recorded in the number of pairs in Scotland using grouse moor (?57%) and young forest (?54%).

Conclusion: The combined breeding population of Hen Harriers in the UK and Isle of Man has shown a non-significant decline between 2010 and 2016. There were notable decreases in England, Northern Ireland and Wales since 2010.  相似文献   

2.
The genetic structure of the earth bumblebee (Bombus terrestris L.) was examined across 22 wild populations and two commercially reared populations using eight microsatellite loci and two mitochondrial genes. Our study included wild bumblebee samples from six populations in Ireland, one from the Isle of Man, four from Britain and 11 from mainland Europe. A further sample was acquired from New Zealand. Observed levels of genetic variability and heterozygosity were low in Ireland and the Isle of Man, but relatively high in continental Europe and among commercial populations. Estimates of Fst revealed significant genetic differentiation among populations. Bayesian cluster analysis indicated that Irish populations were highly differentiated from British and continental populations, the latter two showing higher levels of admixture. The data suggest that the Irish Sea and prevailing south westerly winds act as a considerable geographical barrier to gene flow between populations in Ireland and Britain; however, some immigration from the Isle of Man to Ireland was detected. The results are discussed in the context of the recent commercialization of bumblebees for the European horticultural industry.  相似文献   

3.
A survey of breeding Hen Harriers in the UK and the Isle of Man carried out in 1998 consisted of two parts: a complete census of 10-km squares at the core of the species'known range, and a random sample of 10-km squares across the rest of its known recent range. From this, the UK and Isle of Man breeding population was estimated at 570 territorial pairs: 436 in Scotland, 19 in England, 28 in Wales, 38 in Northern Ireland and 49 on the Isle of Man. Although there was no overall change in the size of the UK and Isle of Man population between 1988–94 and 1998, numbers declined in Orkney and increased in Northern Ireland. In Scotland, numbers increased on grouse moors and decreased in young plantation between 1988–89 and 1998, so that 55% of the population is now found on grouse moor. A similar situation exists in England, but in Northern Ireland 45% of the population was found breeding in open areas within mature conifer plantations in 1998.  相似文献   

4.
Capsule The fourth national survey of Hen Harrier showed that the population in the UK and the Isle of Man declined significantly between 2004 and 2010.

Aim To estimate the size of the breeding Hen Harrier population (with associated 95% confidence intervals) in the UK and Isle of Man, constituent countries and Scottish regions, in 2010 and calculate population change since previous surveys in 1998 and 2004.

Methods Complete surveys were made of 10-km squares likely to be occupied by breeding Hen Harriers in England, Wales, Northern Ireland and the Isle of Man, using standard methods developed for previous national surveys. In Scotland, a ‘census’ area was non-randomly selected for survey by volunteers, and randomly selected squares were surveyed in two strata covering the rest of the known range.

Results The UK and Isle of Man Hen Harrier population was estimated at 662 territorial pairs (95% confidence interval (CI): 576–770), a significant decline of 18% since 2004. Scotland holds the bulk (76%) of the population (505 territorial pairs; 95% CI: 417–612), with smaller numbers in Northern Ireland (59 pairs), Wales (57 pairs), the Isle of Man (29 pairs) and England (12 pairs). Declines of 49% and 20% were observed in the Isle of Man and in Scotland, respectively, whereas the Welsh population increased by 33%. A significant decrease was recorded in numbers of pairs using young and mature plantation forest in Scotland.

Conclusion The breeding population of Hen Harriers in the UK and Isle of Man declined between 2004 and 2010. Notable decreases in Scotland and the Isle of Man may be related to habitat change and illegal persecution. Illegal persecution continues to limit the population size of harriers in England to very low levels.  相似文献   

5.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   

6.
The role of marine currents in shaping population connectivity in the common cockle Cerastoderma edule was investigated in the southern Irish Sea. C. edule is one of the most valuable and exploited shellfish species in the area, yet very little is known about its population dynamics. In the present study, coupled hydrodynamic and particle tracking models are used in conjunction with genetic data collected at twelve microsatellite loci to estimate the influence of the Celtic Sea front on larval transport between the coasts of Britain and Ireland. Genetic analysis highlights the presence of at least three genetic clusters partitioned within locations, suggesting a contact zone between separate subpopulations. Samples collected from the Irish coast are most similar to each other. On the British coast, the Burry Inlet appears genetically isolated while samples collected from the coast of Pembrokeshire show evidence of connectivity between Britain and Ireland. These results agree with the model’s predictions: away from the coastal zone, residual baroclinic currents develop along tidal mixing fronts and act as conduit systems, transporting larvae great distances. Larvae spawned in south Wales are capable of travelling west towards Ireland due to the Celtic Sea front residual current, confirming the action of the Celtic Sea front on larval transport. Sheltered, flood-dominant estuaries such as the Burry Inlet promote self-recruitment. The validation of the model using genetic data represents progress towards a sustainable future for the common cockle, and paves the way for a more effective approach to management of all Irish Sea shellfisheries.  相似文献   

7.
The bryozoan Schizoporella japonica Ortmann (1890) was first recorded in European waters in 2010 and has since been reported from further locations in Great Britain (GB) and Norway. This paper provides a new earliest European record for the species from 2009, a first record from Ireland and presence and absence records from a total of 231 marinas and harbours across GB, Ireland, the Isle of Man, France and Portugal. This species is typically associated with human activity, including commercial and recreational vessels, aquaculture equipment, and both wave and tidal energy devices. It has also been observed in the natural environment, fouling rocks and boulders. The species has an extensive but widely discontinuous distribution in GB and Ireland. Although found frequently in marinas and harbours in Scotland, it inhabits only a few sites in England, Wales and Ireland, interspersed with wide gaps that are well documented as genuine absences. This appears to be a rare example of a southward-spreading invasion in GB and Ireland. The species has been reported from the Isle of Man and Norway but has not been found in France or Portugal. In the future we expect S. japonica to spread into suitable sections of the English, Welsh and Irish coasts, and further within Europe. The species’ capability for long-distance saltatory spread and potential for negative impact on native ecosystems and economic activity suggests that S. japonica should now be considered invasive in GB and Ireland. As such, it is recommended that biosecurity procedures alongside effective surveillance and monitoring should be prioritised for regions outside the species’ current distribution.  相似文献   

8.
To help stem the precipitous decline of coral reef ecosystems world-wide, conservation efforts are focused on establishing interconnected reserve networks to protect threatened populations. Because many coral reef organisms have a planktonic or pelagic larval dispersal phase, it is critical to understand the patterns of ecological connectivity between reserve populations that result from larval dispersal. We used genetics to infer dispersal patterns among 24 Indo-West Pacific populations of the mantis shrimp, Haptosquilla pulchella. Contrary to predictions of high dispersal facilitated by the strong currents of the Indonesian throughflow, mitochondrial DNA sequences from 393 individuals displayed striking patterns of regional genetic differentiation concordant with ocean basins isolated during periods of lowered sea level. Patterns of genetic structuring indicate that although dispersal within geographical regions with semicontiguous coastlines spanning thousands of kilometres may be common, ecologically meaningful connections can be rare among populations separated by as little as 300 km of open ocean. Strong genetic mosaics in a species with high dispersal potential highlight the utility of genetics for identifying regional patterns of genetic connectivity between marine populations and show that the assumption that ocean currents will provide ecological connectivity among marine populations must be empirically tested in the design of marine reserve networks.  相似文献   

9.
Understanding patterns of connectivity among populations of marine organisms is essential for the development of realistic, spatially explicit models of population dynamics. Two approaches, empirical genetic patterns and oceanographic dispersal modelling, have been used to estimate levels of evolutionary connectivity among marine populations but rarely have their potentially complementary insights been combined. Here, a spatially realistic Lagrangian model of larval dispersal and a theoretical genetic model are integrated with the most extensive study of gene flow in a Caribbean marine organism. The 871 genets collected from 26 sites spread over the wider Caribbean subsampled 45.8% of the 1900 potential unique genets in the model. At a coarse scale, significant consensus between modelled estimates of genetic structure and empirical genetic data for populations of the reef-building coral Montastraea annularis is observed. However, modelled and empirical data differ in their estimates of connectivity among northern Mesoamerican reefs indicating that processes other than dispersal may dominate here. Further, the geographic location and porosity of the previously described east-west barrier to gene flow in the Caribbean is refined. A multi-prong approach, integrating genetic data and spatially realistic models of larval dispersal and genetic projection, provides complementary insights into the processes underpinning population connectivity in marine invertebrates on evolutionary timescales.  相似文献   

10.
The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.  相似文献   

11.
Estimating the patterns of connectivity in marine taxa with planktonic dispersive stages is a challenging but crucial task because of its conservation implications. The red gorgonian Paramuricea clavata is a habitat forming species, characterized by short larval dispersal and high reproductive output, but low recruitment. In the recent past, the species was impacted by mass mortality events caused by increased water temperatures in summer. In the present study, we used 9 microsatellites to investigate the genetic structure and connectivity in the highly threatened populations from the Ligurian Sea (NW Mediterranean). No evidence for a recent bottleneck neither decreased genetic diversity in sites impacted by mass mortality events were found. Significant IBD pattern and high global FST confirmed low larval dispersal capability in the red gorgonian. The maximum dispersal distance was estimated at 20–60 km. Larval exchange between sites separated by hundreds of meters and between different depths was detected at each site, supporting the hypothesis that deeper subpopulations unaffected by surface warming peaks may provide larvae for shallower ones, enabling recovery after climatically induced mortality events.  相似文献   

12.
A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50–84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions.  相似文献   

13.
A central question of marine ecology is, how far do larvae disperse? Coupled biophysical models predict that the probability of successful dispersal declines as a function of distance between populations. Estimates of genetic isolation-by-distance and self-recruitment provide indirect support for this prediction. Here, we conduct the first direct test of this prediction, using data from the well-studied system of clown anemonefish (Amphiprion percula) at Kimbe Island, in Papua New Guinea. Amphiprion percula live in small breeding groups that inhabit sea anemones. These groups can be thought of as populations within a metapopulation. We use the x- and y-coordinates of each anemone to determine the expected distribution of dispersal distances (the distribution of distances between each and every population in the metapopulation). We use parentage analyses to trace recruits back to parents and determine the observed distribution of dispersal distances. Then, we employ a logistic model to (i) compare the observed and expected dispersal distance distributions and (ii) determine the relationship between the probability of successful dispersal and the distance between populations. The observed and expected dispersal distance distributions are significantly different (p < 0.0001). Remarkably, the probability of successful dispersal between populations decreases fivefold over 1 km. This study provides a framework for quantitative investigations of larval dispersal that can be applied to other species. Further, the approach facilitates testing biological and physical hypotheses for the factors influencing larval dispersal in unison, which will advance our understanding of marine population connectivity.  相似文献   

14.
The Spratly Island archipelago is a remote network of coral reefs and islands in the South China Sea that is a likely source of coral larvae to the greater region, but about which little is known. Using a particle-tracking model driven by oceanographic data from the Coral Triangle region, we simulated both spring and fall spawning events of Acropora millepora, a common coral species, over a 46-yr period (1960–2005). Simulated population biology of A. millepora included the acquisition and loss of competency, settlement over appropriate benthic habitat, and mortality based on experimental data. The simulations aimed to provide insights into the connectivity of reefs within the Spratly Islands, the settlement of larvae on reefs of the greater South China Sea, and the potential dispersal range of reef organisms from the Spratly Islands. Results suggest that (1) the Spratly Islands may be a significant source of A. millepora larvae for the Palawan reefs (Philippines) and some of the most isolated reefs of the South China Sea; and (2) the relatively isolated western Spratly Islands have limited source reefs supplying them with larvae and fewer of their larvae successfully settling on other reefs. Examination of particle dispersal without biology (settlement and mortality) suggests that larval connectivity is possible throughout the South China Sea and into the Coral Triangle region. Strong differences in the spring versus fall larval connectivity and dispersal highlight the need for a greater understanding of spawning dynamics of the region. This study confirms that the Spratly Islands are likely an important source of larvae for the South China Sea and Coral Triangle region.  相似文献   

15.
Whether mesophotic reefs will behave as refugia for corals threatened by global climate change and coastal development depends on vertical exchange of larvae between diverse habitats. Here we use a biophysical model of larval dispersal to estimate vertical connectivity of a broadcasting (Orbicella faveolata) and a brooding (Porites astreoides) species of coral in the US Virgin Islands. Modeling predicts subsidy to shallow areas by mesophotic larvae of both species based on local hydrology, adult reproductive characteristics, larval traits, and a wide range of scenarios developed to test depth-sensitive factors, such as fertilization rates and post-settlement survivorship. In extreme model scenarios of reduced fertilization and post-settlement survivorship of mesophotic larvae, 1–10 % local mesophotic subsidy to shallow recruitment is predicted for both species, which are demographically significant. Although direct vertical connectivity is higher for the broadcaster, the brooder demonstrates higher local multigenerational vertical connectivity, which suggests that local P. astreoides populations are more resilient than those of O. faveolata, and corroborates field studies. As shallow habitat degrades, mesophotic–shallow subsidy is predicted to increase for both species. This study is the first of its kind to simulate larval dispersal and settlement between habitats of different depths, and these findings have local, regional, and global implications for predicting and managing coral reef persistence in a changing climate.  相似文献   

16.
Recruitment constraints on Singapore''s dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore''s reefs and other reefs in the region, 2) there is limited exchange within Singapore''s Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore''s Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1–68.6 settled individuals per 10,000 m2). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.  相似文献   

17.
Population genetics is a powerful tool for measuring important larval connections between marine populations [1-4]. Similarly, oceanographic models based on environmental data can simulate particle movements in ocean currents and make quantitative estimates of larval connections between populations possible [5-9]. However, these two powerful approaches have remained disconnected because no general models currently provide a means of directly comparing dispersal predictions with empirical genetic data (except, see [10]). In addition, previous genetic models have considered relatively simple dispersal scenarios that are often unrealistic for marine larvae [11-15], and recent landscape genetic models have yet to be applied in a marine context [16-20]. We have developed a genetic model that uses connectivity estimates from oceanographic models to predict genetic patterns resulting from larval dispersal in a Caribbean coral. We then compare the predictions to empirical data for threatened staghorn corals. Our coupled oceanographic-genetic model predicts many of the patterns observed in this and other empirical datasets; such patterns include the isolation of the Bahamas and an east-west divergence near Puerto Rico [3, 21-23]. This new approach provides both a valuable tool for predicting genetic structure in marine populations and a means of explicitly testing these predictions with empirical data.  相似文献   

18.
The marine, tide pool-dwelling ciliate Stombidium oculatum was redescribed using live, stained, SEM, and TEM material prepared from samples collected from pools on the Isle of Man (Irish Sea) and Brittany (France). Also, we reviewed the older German and French works that reported on ciliates collected in the Mediterranean and Brittany, respectively. The Brittany and Isle of Man populations of the ciliate were considered identical. Some morphological and behavioural differences exist between the Brittany-Isle of Man populations and the Mediterranean populations, but they were insufficient to distinguish different taxa. Thus, taxa from all three locations were considered to be conspecific. Key features used to describe the ciliate were: morphology and ultrastructure of the free-swimming ciliate; cyst morphology; presence of mixotrophic-chloroplasts; presence of an eye spot composed of stigma obtained from chlorophyte prey; division, morphogenesis, and nuclear structure; live observations and behaviour, including the encystment-excystment cycle. Based on morphological and behavioural characteristics the taxon was distinguished from other similar species, and a neotype has been designated as no type material exists.  相似文献   

19.
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well‐connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean‐warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph‐theoretical approach based on centrality (eigenvector and distance‐weighted fragmentation) of habitat patches can help design better‐connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation‐only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.  相似文献   

20.
Aim To present radiocarbon dated early Holocene pollen analytical data from two sites on the northern plain of the Isle of Man and to discuss the implications of the vegetation history in relation to severance of the island from the British Isles and to identify further evidence for divergent biogeographical development previously exemplified by the survival and apparent dwarfism of late glacial Megaloceros giganteus (Giant Deer). Location The Isle of Man, British Isles. Methods Pollen analysis and AMS radiocarbon dating of late glacial to early Holocene lake sequences at Pollies and Curragh‐y‐Cowle on the northern plain of the Isle of Man. Results The pollen data indicate a prolonged period of pre‐woodland vegetation after the late Glacial/Holocene transition, which lasted for most of the first post‐glacial millennium. This persistence of pre‐forest environments meant that the expansion of Betula woodland occurred later in this part of the Isle of Man than in adjacent areas of Britain and Ireland. Conclusions The Isle of Man, in the northern Irish Sea, was isolated from Britain during the late Glacial period perhaps explaining the delayed arrival of tree species. Delayed rise of the Holocene forest compared with surrounding regions probably reflects severance of the land‐bridge with Cumbria, but also could be a function of climate changes during the early Holocene and local environmental conditions. Late survival and the dwarfism of the Megaloceros giganteus (Giant Deer) fauna is another example of biogeographical divergence during the early Holocene/late Glacial of the Isle of Man. The delayed afforestation and absence of human hunters in the Manx early Holocene offers a permissive environmental context for the as yet unproven survival of Megaloceros into the early Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号