首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic diversity among five populations (Bhadbada reservoir, Mohinisagar reservoir, Bansagar reservoir, Bargi reservoir and Gandhisagar reservoir) was revealed using random amplified polymorphic DNA markers. 10 random primers screened, 5 primers revealed various banding patterns and yielded 71 total loci as an average of which 39.60 (55.77%) were polymorphic between the population and 86.84% within the population of Sperata seenghala. Population wise the highest genetic polymorphism was obtained in Bhadbada reservoir as 67.61% whereas the lowest was in Gandhisagar reservoir as 49.30%. However, Analysis of Molecular Variance indicated low genetic diversity (Hpop = 0.0921 ± 0.1249; I = 0.1584 ± 0.1942) in Bansagar reservoir. Relative genetic differentiation (GST = 0.3993) and restricted gene flow (Nm = 0.7523) as an average indicated low gene diversity among the fish populations. The un-weighted pair group method with averages (UPGMA) dendrogram showed 05 major clusters, each cluster representing a population. Fish population of Mohinisagar reservoir showed high genetic distance (0.3981) with respective Bargi reservoir population and highest genetic identity (0.8846) reflected between Bansagar and Gandhisagar reservoir. Highest genetic distance between Mohinisagar and Bargi reservoir fish populations shows no significant correlation between genetic and geographical distance of the genotypes collected from different lentic and geographical isolated water bodies. This investigation indicated that lowest genetic diversity existed in different geographic populations of S. seenghala. All the five populations were found to be low in genetic variation, which is useful information for future conservation measures of S. seenghala confined in natural water bodies of Madhya Pradesh.  相似文献   

2.
As the plants of turfgrass, forage and environment protecting plants, Carex L. has important economic value. The aims of the study were to construct ISSR-PCR amplification reaction system on Carex and to investigate the genetic diversity of 16 Carex populations belonging to 10 species using inter-simple sequence repeat (ISSR) makers. A total of 120 polymorphic amplified bands were obtained from 6 primers, and the percentage of polymorphisms was 100%. Genetic similarity between accessions ranged from 0.4250 to 0.8667 with an average of 0.6459, suggesting that the collected accessions are genetically diverse. All accessions were grouped into 3 clusters according to the UPGMA dendrogram. Most of the populations from the same regions can be basically clustered together and molecular grouping of Carex spp. correlates with geographical distribution and ecological environment. However, a few appeared to be divergent with the geographical distribution. The results showed that ISSR maker is an effective tool for the study of genetic diversity in Carex. As for the genus Carex, such information is needed for successful management and preservation of species to ensure the maintenance of genetic variation.  相似文献   

3.
The genetic diversity of 177 accessions of Panicum turgidum Forssk, representing ten populations collected from four geographical regions in Saudi Arabia, was analyzed using amplified fragment length polymorphism (AFLP) markers. A set of four primer-pairs with two/three selective nucleotides scored 836 AFLP amplified fragments (putative loci/genome landmarks), all of which were polymorphic. Populations collected from the southern region of the country showed the highest genetic diversity parameters, whereas those collected from the central regions showed the lowest values. Analysis of molecular variance (AMOVA) revealed that 78% of the genetic variability was attributable to differences within populations. Pairwise values for population differentiation and genetic structure were statistically significant for all variances. The UPGMA dendrogram, validated by principal coordinate analysis-grouped accessions, corresponded to the geographical origin of the accessions. Mantel’s test showed that there was a significant correlation between the genetic and geographical distances (r = 0.35, P < 0.04). In summary, the AFLP assay demonstrated the existence of substantial genetic variation in P. turgidum. The relationship between the genetic diversity and geographical source of P. turgidum populations of Saudi Arabia, as revealed through this comprehensive study, will enable effective resource management and restoration of new areas without compromising adaptation and genetic diversity.  相似文献   

4.
Thirteen accessions of pearl millet (Pennisetum typhoides (L) Leeke) collected from different states of India and eight wild species of the genus Pennisetum across the world were analyzed for genetic diversity using AFLP markers. A combined analysis of eight primer combinations showed 35% polymorphism among P. typhoides accessions while analysis with five primer combinations showed 99% polymorphism among the wild species. The dendrogram constructed for the P. typhoides accessions based on the UPGMA method revealed two major clusters with samples from Gujarat forming a separate cluster from the rest of the samples. Principal component analysis of the same data set revealed similar results with the first principal component accounting for 65% of the total variation. The percentage of rare and common alleles contributing to the diversity in the sample was analyzed using the Shannon Weiner diversity index. The SW index revealed that the samples from Gujarat contributed significantly to the overall diversity among the accessions. Among accessions of each geographical region, considerable variation was revealed by SW index with samples from Tamil Nadu being most polymorphic. The genetic diversity in the accessions could be utilized for future breeding work. The dendrogram constructed for the wild species revealed the extent of genetic diversity among them. Analysis with one primer combination showed P. typhoides being closer to P. mollissimum than to the other analyzed species.  相似文献   

5.
The West Asian stripe-necked terrapin Mauremys caspica is widespread throughout the Middle East—a region for which only few phylogeographic studies are available. Due to landscape alteration, pollution and intensification of water management, M. caspica is increasingly threatened. However, genetic diversity among and within populations is poorly known, impeding the identification of management units. Using a nearly rangewide sampling, we analyzed 14 microsatellite loci and mtDNA sequences in order to gain insight into the population structure and history of M. caspica. In agreement with a previous study, we found two clusters of mitochondrial haplotypes, with one cluster distributed in the east and the other in the west of the range. However, our microsatellite data suggested a more pronounced geographical structuring. When null alleles were coded as recessive with structure 2.3.2, three clusters were revealed, with one cluster matching roughly the range of the western mitochondrial cluster, and the composite ranges of the two other microsatellite clusters correspond to the distribution of the eastern mitochondrial cluster. Naïve structure analyses without correction for null alleles were congruent with respect to the two eastern microsatellite clusters, but subdivided the western cluster into two units, with an additional geographical divide corresponding to the ‘Anatolian diagonal’—a well-known high mountain barrier impeding exchange between western and eastern taxa. In naïve analyses, the westernmost microsatellite cluster (from Central Anatolia) is quite isolated from the others, and its distinctness is also supported by fixation indices resembling the values among the other three clusters. One of the two eastern clusters is distributed in the Caucasus region plus Iran, and terrapins from Saudi Arabia and Bahrain constitute the second eastern cluster, supporting the view that these endangered populations are native. Coalescent-based analyses of our microsatellite data reveal for all four clusters bottlenecks 4,000–20,000 years ago, suggesting that climatic fluctuations of the Late Pleistocene and Holocene played an important role in shaping current genetic diversity. We propose that each of the four identified clusters, including the Central Anatolian one, should be treated as a distinct management unit. The presence of non-native terrapins in the animal trade of Bahrain highlights the danger of genetic pollution of the endangered Arabian populations. Further sampling is needed to elucidate the situation in southern and central Iran and Iraq. Our results confirm that genetic data do not support the validity of any of the three morphologically defined subspecies of M. caspica, and we propose that their usage be abandoned.  相似文献   

6.
This study presents the first examination of the genetic structure of Daphnia longispina complex populations in Eastern China. Only one species, D. galeata, was present across the eight investigated lakes; as identified by taxon assignment using allelic variation at 15 microsatellite loci. Three genetically differentiated D. galeata subgroups emerged independent of the type of statistical analysis applied. Thus, Bayesian clustering, discriminant analysis based on results from factorial correspondence analysis, and UPGMA clustering consistently showed that populations from two neighbouring lakes were genetically separated from a mixture of genotypes found in other lakes, which formed another two subgroups. Clonal diversity was high in all D. galeata populations, and most samples showed no deviation from Hardy-Weinberg equilibrium, indicating that clonal selection had little effect on the genetic diversity. Overall, populations did not cluster by geographical origin. Further studies will show if the observed pattern can be explained by natural colonization processes or by recent anthropogenic impact on predominantly artificial lakes.  相似文献   

7.
The molecular genetic diversity of 404 indigenous landraces from sesame core collection in China were evaluated by 11 SRAP and 3 SSR markers, 175 fragments were generated, of which 126 were polymorphic with an average polymorphism rate of 72%. Jaccard’s genetic similarity coefficients (GS=0.7130), Nei’s gene diversity (h=0.2418) and Shannon’s Information index (I=0.3847) were calculated, a dendrogram of the 404 landraces was made, landraces from various zones were distributed throughout the dendrogram, accessions from different agro-ecological zones were indistinguishable by cluster analysis, geographical separation did not generally result in greater genetic distance, a similar pattern was obtained using principal coordinates (PCO) analysis. As to seven agro-ecological zones, the maximum Nei’s gene diversity (h = 0.2613) and Shannon index (I = 0.3980) values in zone VII indicated that they were genetically more diverse than those in other zones, while the least genetically diverse region was zone III (h = 0.1772, I = 0.2858). Nei’s genetic identity and genetic distance among landraces from seven agro-ecological zones were also analyzed, the genetic relationship of seven zones was inferred using the UPGMA method. This study demonstrated that SRAP and SSR markers were appropriate for evaluation of sesame genetic diversities. There existed extensive genetic diverse among indigenous landraces and the abundance of genetic diversity of landraces in different agro-ecological zones was various. Understanding of these characteristics of indigenous landraces in China can provide theoretical foundation for further collection, effective protection and reasonable utilization of these sesame landraces in breeding.  相似文献   

8.
Genetic variation is a key component for improving a stock through selective breeding programs. Randomly amplified polymorphic DNA (RAPD) markers were used to assess genetic variation in three wild population of the catla carp (Catla catla Hamilton 1822) in the Halda, Jamuna and Padma rivers and one hatchery population in Bangladesh. Five decamer random primers were used to amplify RAPD markers from 30 fish from each population. Thirty of the 55 scorable bands were polymorphic, indicating some degree of genetic variation in all the populations. The proportion of polymorphic loci and gene diversity values reflected a relatively higher level of genetic variation in the Halda population. Sixteen of the 30 polymorphic loci showed a significant (p < 0.05, p < 0.01, p < 0.001) departure from homogeneity and the F(ST) values in the different populations indicated some degree of genetic differentiation in the population pairs. Estimated genetic distances between populations were directly correlated with geographical distances. The unweighted pair group method with averages (UPGMA) dendrogram showed two clusters, the Halda population forming one cluster and the other populations the second cluster. Genetic variation of C. catla is a useful trait for developing a good management strategy for maintaining genetic quality of the species.  相似文献   

9.
The vulnerable Chinese cobra (Naja atra) ranges from southeastern China south of the Yangtze River to northern Vietnam and Laos. Large mountain ranges and water bodies may influence the pattern of genetic diversity of this species. We sequenced the mitochondrial DNA control region (1029 bp) using 285 individuals collected from 23 localities across the species'' range and obtained 18 sequences unique to Taiwan from GenBank for phylogenetic and population analysis. Two distinct clades were identified, one including haplotypes from the two westernmost localities (Hekou and Miyi) and the other including haplotypes from all sampling sites except Miyi. A strong population structure was found (Φst = 0.76, P<0.0001) with high haplotype diversity (h = 1.00) and low nucleotide diversity (π = 0.0049). The Luoxiao and Nanling Mountains act as historical geographical barriers limiting gene exchange. In the haplotype network there were two “star” clusters. Haplotypes from populations east of the Luoxiao Mountains were represented within one cluster and haplotypes from populations west of the mountain range within the other, with haplotypes from populations south of the Nanling Mountains in between. Lineage sorting between mainland and island populations is incomplete. It remains unknown as to how much adaptive differentiation there is between population groups or within each group. We caution against long-distance transfers within any group, especially when environmental differences are apparent.  相似文献   

10.
178 bacterial strains were isolated from the soil samples collected from different regions of India out of which, 20 bacterial isolates were selected for alkaline protease production. The alkaline protease production efficiency of organisms was monitored at regular intervals (24 h) upto 7 days at 37 °C, pH 10. The 16S rDNA sequencing and RAPD-PCR based technique were used to identify the genetic variability among the 20 isolates of alkaline protease producing bacteria. The phylogenetic analysis indicated that the isolates can be separated into two clusters which could be further subdivided into five groups. Group 1 and 5 represented the family Bacillaceae, Groups 2 represented the Micrococcaceae family while Group 3 included the Arthrobacter bacterial group (family Micrococcaceae) from different geographical locations, respectively. Group 4 was identified as Pseudomonadaceae which was gram (−) bacteria. 21 different oligonucleotide primers were used to amplify approximately 261 fragments from each DNA sample. The bands were scored on the basis of their presence and absence and similarity between DNA samples was checked using Jaccard’s coefficient. Isolates were distinguished into distinct groups based on RAPD profiles from different geographical locations, morphological features and enzyme production efficiency. For cluster analysis the dendrogram was constructed using the unweighted pair group method with arithmetic averages (UPGMA). The results indicated that 16S rDNA and RAPD-PCR are suitable methods for rapid identification and differentiation of alkaline protease producing bacteria.  相似文献   

11.

Background and Aims

Species may occur over a wide geographical range within which populations can display large variation in reproductive success and genetic diversity. Neotinea maculata is a rare orchid of conservation concern at the edge of its range in Ireland, where it occurs in small populations. However, it is relatively common throughout the Mediterranean region. Here, factors that affect rarity of N. maculata in Ireland are investigated by comparing Irish populations with those found in Italy, where it is more common.

Methods

Vegetation communities, breeding system and genetic diversity were compared using three amplified fragment length polymorphism (AFLP) primer pairs in populations in Ireland and Italy. Vegetation was quantified using quadrats taken along transects in study populations, and hand pollination experiments were performed to assess reliance of N. maculata on pollinators in both Irish and Italian populations.

Key Results

Neotinea maculata occupies different vegetation communities in Italian and Irish populations. Breeding system experiments show that N. maculata is 100 % autogamous, and there are no differences in fruit and seed production in selfed, outcrossed and unmanipulated plants. AFLP markers revealed that Irish and Italian populations have similar genetic diversity and are distinct from each other.

Conclusions

Neotinea maculata does not suffer any negative effects of autogamous reproduction; it self-pollinates and sets seed readily in the absence of pollinators. It occupies a variety of habitats in both Ireland and Italy; however, Irish populations are small and rare and should be conserved. This could be due to climatic factors and the absence of suitable soil mycorrhizas to allow recruitment from seed.Key words: Neotinea maculata, AFLP, autogamy, conservation, genetic diversity, Lusitanian species, pollination  相似文献   

12.
Twenty isolates of Tilletia indica collected from sites in North and North‐western India showed pathogenic variation on 18 host differentials. Sixteen aggressive pathotypes were identified on the basis of percent coefficient of infection (PCI). Two major clusters were apparent in the dendrogram; cluster 1 comprised 13 isolates and cluster two consisted of seven isolates. One of the isolate Kashipur had a high PCI on most of the host differentials compared to other isolates. Polymerase chain reaction‐based random amplified polymorphic DNA (PCR – RAPD) analysis also divided isolates into two major clusters, one comprising of 5 isolates collected from hill and foot‐hill sites and another group comprising of 15 isolates collected from plain sites. Thus, the clusters identified based on PCI did not match closely with those identified by molecular analysis based on RAPD. Although diversity among the isolates of T. indica was absent in the rDNA‐ITS region, our study based on pathogenicity and molecular markers confirms the existence of great diversity in the pathogen, also shifting of ‘hot spot’ areas from one place to another within Karnal bunt prevailing areas.  相似文献   

13.
We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area.  相似文献   

14.
Taxus wallichiana var. mairei is an endangered conifer with important medicinal value in southern China. Nuclear SSR markers were employed to assess genetic diversity and structure of 13 geographically disjunct populations. The present study revealed a moderate genetic diversity (HE = 0.538) and low genetic differentiation (FST = 0.159). And most populations encountered in severe inbreeding and bottleneck effect. No significant genetic structure was detected by IBD and Structure analysis, which was supported by AMOVA analysis. The present results could be ascribed to an earlier period of more pronounced gene flow when the species had a more continuous distribution. However, the 13 studied populations were divided into four clusters based on the UPGMA dendrogram; these clusters were almost congruent with their geographical distributions. Vital areas such as southern mountains of Sichuan basin, Nanling Mts. and the margin of this yew's distribution range had a high priority for conservation.  相似文献   

15.
The agarophyte Gracilariopsis lemaneiformis is both important for biological research and of significant economic value. However, the genetic diversity of wild populations of the alga has not been studied. We used amplified fragment length polymorphism (AFLP) PCR and simple sequence repeat (SSR) analysis to investigate diversity in four field populations, three from the coast of Qingdao and one from Weihai, China. Forty G. lemaneiformis isolates collected from the four different geographical groups were analyzed using 16 pairs of SSR primers for PCR amplification. However, no polymorphisms were detected, indicative of a degree of genetic homogeneity. A total of 347 reproducible bands were then amplified using eight AFLP primer pairs, and genetic indices of diversity within and between populations were calculated. This analysis revealed only low levels of genetic diversity both within and between the four geographical groups of G. lemaneiformis. The Weihai population showed a higher within-population genetic diversity than any of the Qingdao populations. The data suggest that there is only limited gene flow between populations. An UPGMA dendrogram revealed two main clusters, and one of these included all the Qingdao isolates. The order of clustering was in accordance with their geographical distribution. These results suggest that the wild G. lemaneiformis populations are closely related and that there is little genetic diversity within wild germplasm in the regions sampled.  相似文献   

16.
The present study was conducted to assess the genetic diversity, population structure, and relatedness in Indian red jungle fowl (RJF, Gallus gallus murgi) from northern India and three domestic chicken populations (gallus gallus domesticus), maintained at the institute farms, namely White Leghorn (WL), Aseel (AS) and Red Cornish (RC) using 25 microsatellite markers. All the markers were polymorphic, the number of alleles at each locus ranged from five (MCW0111) to forty-three (LEI0212) with an average number of 19 alleles per locus. Across all loci, the mean expected heterozygosity and polymorphic information content were 0.883 and 0.872, respectively. Population-specific alleles were found in each population. A UPGMA dendrogram based on shared allele distances clearly revealed two major clusters among the four populations; cluster I had genotypes from RJF and WL whereas cluster II had AS and RC genotypes. Furthermore, the estimation of population structure was performed to understand how genetic variation is partitioned within and among populations. The maximum ?K value was observed for K = 4 with four identified clusters. Furthermore, factorial analysis clearly showed four clustering; each cluster represented the four types of population used in the study. These results clearly, demonstrate the potential of microsatellite markers in elucidating the genetic diversity, relationships, and population structure analysis in RJF and domestic chicken populations.  相似文献   

17.
We developed random amplified polymorphic DNA (RAPD) analysis for the assessment of the genetic relationship between cultured populations of the Pacific oyster Crassostrea gigas Thunberg in Hiroshima and Goseong, the largest oyster farming areas in Japan and Korea, respectively. Of 25 arbitrary primers comprising decamer nucleotides of random sequences, polymerase chain reaction amplifications with 5 different primers gave reproducible electrophoretic patterns. A total of 49 RAPD markers were clearly identified for the Hiroshima and Goseong populations, and 46 markers were polymorphic presenting mean polymorphism rates of the respective populations at 92.29% and 93.32%. Pairwise genetic distances of each 20 individuals from these populations served to produce a UPGMA dendrogram. The dendrogram comprised two main clusters, one of which was a nested cluster including all individuals of the Hiroshima population along with 12 individuals of the Goseong population, and the other cluster included the remaining individuals of the Goseong population. Results indicate that RAPD markers are useful for the assessment of the genetic relationships between populations of the Pacific oyster and further that a significant portion of oysters imported from Korea could be genetically related to the Hiroshima population.  相似文献   

18.
Invasive species’ success may depend strongly on the genetic resources they maintain through the invasion process. We ask how many introductions have occurred in the North American weed Centaurea stoebe micranthos (Asteraceae), and explore whether genetic diversity and population structure have changed as a result of introduction. We surveyed individuals from 15 European native range sites and 11 North American introduced range sites at six polymorphic microsatellite loci. No significant difference existed in the total number of alleles or in the number of private alleles found in each range. Shannon–Weaver diversity of phenotype frequencies was also not significantly different between the ranges, while expected heterozygosity was significantly higher in the invasive range. Population structure was similar between the native range and the invasive range, and isolation by distance was not significant in either range. Traditional assignment methods did not allocate any North American individuals to the sampled European populations, while Bayesian assignment methods grouped individuals into nine genetic clusters, with three of them shared between North America and Europe. Invasive individuals tended to have genetically admixed profiles, while natives tended to assign more strongly to a single cluster. Many North American individuals share assignment with Romania and Bulgaria, suggesting two separate invasions that have undergone gene flow in North America. Samples from three other invasive range sites were genetically distinct, possibly representing three other unique introductions. Multiple introductions and the maintenance of high genetic diversity through the introduction process may be partially responsible for the invasive success of C. stoebe micranthos.  相似文献   

19.
Picrorhiza kurrooa L., a high altitude medicinal plant, is known for its drug content called Kutkin. In the present study, DNA-based molecular marker techniques, viz. simple sequence repeats (SSR) and cytochrome P-450 markers were used to estimate genetic diversity in Picrorhiza kurrooa. Twenty five accessions of Picrorhiza kurrooa, collected from ten different eco-geographical locations were subjected to 22 SSR and eight cytochrome P-450 primer pairs, out of which 13 SSR markers detected mean 5.037 alleles with a mean polymorphic information content (PIC) of 0.7718, whereas eight cytochrome P-450 markers detected mean 5.0 alleles with a mean PIC of 0.7596. Genetic relationship among the accessions was estimated by constructing the dendrograms using SSR and cytochrome P-450 data. There was a clear consistency between SSR and cytochrome P-450 trees in terms of positioning of most Picrorhiza accessions. SSR markers could cluster various Picrorhiza kurrooa accessions based on their geographical locations whereas cytochrome P-450 markers could cluster few accessions as per their geographical locations. The Mantel test between SSR and cytochrome P-450 markers revealed a good fit correlation (r = 0.6405). The dendrogram constructed using the combined data of SSR and cytochrome P-450s depicted two clusters of accessions based on its eco-geographical locations whereas two clusters contained the accessions from mixed eco-geographical locations. Overall, the results of the present study point towards quiet high degree of genetic variation among the accessions of each eco-geographic region.  相似文献   

20.

Background and Aims

Landscape genetics combines approaches from population genetics and landscape ecology, increasing the scope for conceptual advances in biology. Banksia hookeriana comprises clusters of individuals located on dune crests (geographical populations) physically separated by uninhabitable swales, with local extinctions common through frequent fire and/or severe drought.

Methods

A landscape genetics approach was used to explore landscape-scale genetic connectivity and structure among geographical populations of B. hookeriana on 18 physically separated dunes located within a heterogeneous landscape of 3 × 5 km. These geographical populations were separated by approx. 0·1 to >1 km of unsuitable intervening swale habitat. Using 11 highly variable microsatellite loci, we utilized a Bayesian approach to identify genetic discontinuities within and between these geographical populations. Population allocation tests were then used to detect inter-dune seed dispersal inferred from assignment of individuals to a source population other than that from which they were collected.

Key Results

For the modal number of genetically distinct clusters (n = 17 genetic populations), two coincided with the geographical (dune) populations, eight spanned two to four geographical populations, and the remaining seven were spread among various parts of the sampled dunes, so that most geographical populations were spatially defined mosaics of individuals (subpopulations) belonging to two or more genetic populations. We inferred 25 inter-dune immigrants among the 582 individuals assessed, with an average distance between sink and source dunes of 1·1 km, and a maximum of 3·3 km.

Conclusions

The results show that genetic structure in an apparently strongly spatially structured landscape is not solely dependent on landscape structure, and that many physically defined geographical populations were genetic mosaics. More strikingly, there were physically separated individuals and groups of individuals that were part of the same genetically defined populations. We attribute this mismatch between spatially and genetically defined population structure to the varying closeness of the dunes and the ability of seeds to disperse long distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号