共查询到20条相似文献,搜索用时 0 毫秒
1.
Interactions between a Nuclear Transporter and a Subset of Nuclear Pore Complex Proteins Depend on Ran GTPase 总被引:15,自引:4,他引:15 下载免费PDF全文
Matthias Seedorf Marc Damelin Jason Kahana Tetsuya Taura Pamela A. Silver 《Molecular and cellular biology》1999,19(2):1547-1557
Proteins to be transported into the nucleus are recognized by members of the importin-karyopherin nuclear transport receptor family. After docking at the nuclear pore complex (NPC), the cargo-receptor complex moves through the aqueous pore channel. Once cargo is released, the importin then moves back through the channel for new rounds of transport. Thus, importin and exportin, another member of this family involved in export, are thought to continuously shuttle between the nuclear interior and the cytoplasm. In order to understand how nuclear transporters traverse the NPC, we constructed functional protein fusions between several members of the yeast importin family, including Pse1p, Sxm1p, Xpo1p, and Kap95p, and the green fluorescent protein (GFP). Complexes containing nuclear transporters were isolated by using highly specific anti-GFP antibodies. Pse1-GFP was studied in the most detail. Pse1-GFP is in a complex with importin-α and -β (Srp1p and Kap95p in yeast cells) that is sensitive to the nucleotide-bound state of the Ran GTPase. In addition, Pse1p associates with the nucleoporins Nsp1p, Nup159p, and Nup116p, while Sxm1p, Xpo1p, and Kap95p show different patterns of interaction with nucleoporins. Association of Pse1p with nucleoporins also depends on the nucleotide-bound state of Ran; when Ran is in the GTP-bound state, the nucleoporin association is lost. A mutant form of Pse1p that does not bind Ran also fails to interact with nucleoporins. These data indicate that transport receptors such as Pse1p interact in a Ran-dependent manner with certain nucleoporins. These nucleoporins may represent major docking sites for Pse1p as it moves in or out of the nucleus via the NPC. 相似文献
2.
Tsung-Po Lai Karen A. Stauffer Athulaprabha Murthi Hussam H. Shaheen Gang Peng Nancy C. Martin Anita K. Hopper 《Traffic (Copenhagen, Denmark)》2009,10(9):1243-1256
Trm1 is a tRNA specific m2 2 G methyltransferase shared by nuclei and mitochondria in Saccharomyces cerevisiae . In nuclei, Trm1 is peripherally associated with the inner nuclear membrane (INM). We investigated the mechanism delivering/tethering Trm1 to the INM. Analyses of mutations of the Ran pathway and nuclear pore components showed that Trm1 accesses the nucleoplasm via the classical nuclear import pathway. We identified a Trm1 cis-acting sequence sufficient to target passenger proteins to the INM. Detailed mutagenesis of this region uncovered specific amino acids necessary for authentic Trm1 to locate at the INM. The INM information is contained within a sequence of less than 20 amino acids, defining the first motif for addressing a peripheral protein to this important subnuclear location. The combined studies provide a multi-step process to direct Trm1 to the INM: (i) translation in the cytoplasm; (ii) Ran-dependent import into the nucleoplasm; and (iii) redistribution from the nucleoplasm to the INM via the INM motif. Furthermore, we demonstrate that the Trm1 mitochondrial targeting and nuclear localization signals are in competition with each other, as Trm1 becomes mitochondrial if prevented from entering the nucleus. 相似文献
3.
Polytopic protein biogenesis represents a critical, yet poorly understood area of modern biology with important implications for human disease. Inherited mutations in a growing array of membrane proteins frequently lead to improper folding and/or trafficking. The cystic fibrosis transmembrane conductance regulator (CFTR) is a primary example in which point mutations disrupt CFTR folding and lead to rapid degradation in the endoplasmic reticulum (ER). It has been difficult, however, to discern the mechanistic principles of such disorders, in part, because membrane protein folding takes place coincident with translation and within a highly specialized environment formed by the ribosome, Sec61 translocon, and the ER membrane. This ribosome-translocon complex (RTC) coordinates the synthesis, folding, orientation and integration of transmembrane segments across and into the ER membrane. At the same time, RTC function is controlled by specific sequence determinants within the nascent polypeptide. Recent studies of CFTR and other native membrane proteins have begun to define novel variations in translocation pathways and to elucidate the specific steps that establish complex topology. This article will attempt to reconcile advances in our understanding of protein biogenesis with emerging models of RTC function. In particular, it will emphasize how information within the nascent polypeptide is interpreted by and in turn controls RTC dynamics to generate the broad structural and functional diversity observed for naturally occurring membrane proteins.Abbreviations: AQP, aquaporin; CFTR, cystic fibrosis transmembrane conductance regulator; ECL, extracellular loop; EM, electron microscopy; ER, endoplasmic reticulum; ICL, intracellular loop; PTC, peptidyltransferase center; RNC, ribosome-nascent chain; RTC, ribosome-translocon complex; SRP, signal recognition particle; SR, SRP receptor; TM, transmembrane (segment); TMD, transmembrane domain. ABC, ATP binding cassette; BiP, heavy chain binding protein; FRET, Förster resonance energy transfer; NBD, nucleotide binding domain; SPC, signal peptidase complex; TrAF, translocation-associated factors; TRAM, translocating chain-associated membrane protein; TRAP, translocon-associated protein. 相似文献
4.
5.
6.
7.
Alexandra-Viola Bohne Christian Schwarz Marco Schottkowski Michael Lidschreiber Markus Piotrowski William Zerges J?rg Nickelsen 《PLoS biology》2013,11(2)
Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins. We previously described the RNA binding activity of a 63 kDa chloroplast protein from Chlamydomonas reinhardtii, which has been implicated in expression of the psbA mRNA, encoding the D1 protein of photosystem II. Here, we identify this factor as dihydrolipoamide acetyltransferase (DLA2), a subunit of the chloroplast pyruvate dehydrogenase complex (cpPDC), which is known to provide acetyl-CoA for fatty acid synthesis. Analyses of RNAi lines revealed that DLA2 is involved in the synthesis of both D1 and acetyl-CoA. Gel filtration analyses demonstrated an RNP complex containing DLA2 and the chloroplast psbA mRNA specifically in cells metabolizing acetate. An intrinsic RNA binding activity of DLA2 was confirmed by in vitro RNA binding assays. Results of fluorescence microscopy and subcellular fractionation experiments support a role of DLA2 in acetate-dependent localization of the psbA mRNA to a translation zone within the chloroplast. Reciprocally, the activity of the cpPDC was specifically affected by binding of psbA mRNA. Beyond that, in silico analysis and in vitro RNA binding studies using recombinant proteins support the possibility that RNA binding is an ancient feature of dihydrolipoamide acetyltransferases. Our results suggest a regulatory function of DLA2 in response to growth on reduced carbon energy sources. This raises the intriguing possibility that this regulation functions to coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes. 相似文献
8.
Nup93, a Vertebrate Homologue of Yeast Nic96p, Forms a Complex with a Novel 205-kDa Protein and Is Required for Correct Nuclear Pore Assembly 总被引:7,自引:7,他引:7 下载免费PDF全文
Paola Grandi Tam Dang Nelly Pan Andrej Shevchenko Matthias Mann Douglass Forbes Ed Hurt 《Molecular biology of the cell》1997,8(10):2017-2038
Yeast and vertebrate nuclear pores display significant morphological similarity by electron microscopy, but sequence similarity between the respective proteins has been more difficult to observe. Herein we have identified a vertebrate nucleoporin, Nup93, in both human and Xenopus that has proved to be an evolutionarily related homologue of the yeast nucleoporin Nic96p. Polyclonal antiserum to human Nup93 detects corresponding proteins in human, rat, and Xenopus cells. Immunofluorescence and immunoelectron microscopy localize vertebrate Nup93 at the nuclear basket and at or near the nuclear entry to the gated channel of the pore. Immunoprecipitation from both mammalian and Xenopus cell extracts indicates that a small fraction of Nup93 physically interacts with the nucleoporin p62, just as yeast Nic96p interacts with the yeast p62 homologue. However, a large fraction of vertebrate Nup93 is extracted from pores and is also present in Xenopus egg extracts in complex with a newly discovered 205-kDa protein. Mass spectrometric sequencing of the human 205-kDa protein reveals that this protein is encoded by an open reading frame, KIAAO225, present in the human database. The putative human nucleoporin of 205 kDa has related sequence homologues in Caenorhabditis elegans and Saccharomyces cerevisiae. To analyze the role of the Nup93 complex in the pore, nuclei were assembled that lack the Nup93 complex after immunodepletion of a Xenopus nuclear reconstitution extract. The Nup93-complex–depleted nuclei are clearly defective for correct nuclear pore assembly. From these experiments, we conclude that the vertebrate and yeast pore have significant homology in their functionally important cores and that, with the identification of Nup93 and the 205-kDa protein, we have extended the knowledge of the nearest-neighbor interactions of this core in both yeast and vertebrates. 相似文献
9.
Nup124p Is a Nuclear Pore Factor of Schizosaccharomyces pombe That Is Important for Nuclear Import and Activity of Retrotransposon Tf1 下载免费PDF全文
David Balasundaram Michael J. Benedik Mary Morphew Van-Dinh Dang Henry L. Levin 《Molecular and cellular biology》1999,19(8):5768-5784
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag. 相似文献
10.
Istvan Boldogh Nikola Vojtov Sharon Karmon Liza A. Pon 《The Journal of cell biology》1998,141(6):1371-1381
Transfer of mitochondria to daughter cells during yeast cell division is essential for viable progeny. The actin cytoskeleton is required for this process, potentially as a track to direct mitochondrial movement into the bud. Sedimentation assays reveal two different components required for mitochondria–actin interactions: (1) mitochondrial actin binding protein(s) (mABP), a peripheral mitochondrial outer membrane protein(s) with ATP-sensitive actin binding activity, and (2) a salt-inextractable, presumably integral, membrane protein(s) required for docking of mABP on the organelle. mABP activity is abolished by treatment of mitochondria with high salt. Addition of either the salt-extracted mitochondrial peripheral membrane proteins (SE), or a protein fraction with ATP-sensitive actin-binding activity isolated from SE, to salt-washed mitochondria restores this activity. mABP docking activity is saturable, resistant to high salt, and inhibited by pre-treatment of salt-washed mitochondria with papain. Two integral mitochondrial outer membrane proteins, Mmm1p (Burgess, S.M., M. Delannoy, and R.E. Jensen. 1994. J.Cell Biol. 126:1375–1391) and Mdm10p, (Sogo, L.F., and M.P. Yaffe. 1994. J.Cell Biol. 126:1361– 1373) are required for these actin–mitochondria interactions. Mitochondria isolated from an mmm1-1 temperature-sensitive mutant or from an mdm10 deletion mutant show no mABP activity and no mABP docking activity. Consistent with this, mitochondrial motility in vivo in mmm1-1 and mdm10Δ mutants appears to be actin independent. Depolymerization of F-actin using latrunculin-A results in loss of long-distance, linear movement and a fivefold decrease in the velocity of mitochondrial movement. Mitochondrial motility in mmm1-1 and mdm10Δ mutants is indistinguishable from that in latrunculin-A–treated wild-type cells. We propose that Mmm1p and Mdm10p are required for docking of mABP on the surface of yeast mitochondria and coupling the organelle to the actin cytoskeleton.Mitochondria are indispensable organelles for normal eukaryotic cell function. Since mitochondria cannot be synthesized de novo, these organelles are inherited, i.e., transferred from mother to daughter during cell division. In the yeast Saccharomyces cerevisiae, vegetative cell division occurs by budding, a form of proliferation in which growth is directed toward the developing bud. Previous studies indicate that mitochondria undergo a series of cell cycle–linked motility events during normal inheritance in yeast (Simon et al., 1997). These are: (a) polarization of mitochondria towards the site of bud emergence in G1 phase; (b) linear, polarized movement of mitochondria from mother cells to developing buds in S phase; (c) immobilization of newly inherited mitochondria in the bud tip during S and G2 phases; and (d) release of immobilized mitochondria from the bud tip during M phase.There is mounting evidence that the actin cytoskeleton controls mitochondrial morphology and inheritance during vegetative yeast cell growth. The two major actin structures of yeast observed by light microscopy are patches and cables. Actin cables are bundles of actin filaments that extend from the mother into the bud. Mitochondria colocalize with these actin cables (Drubin et al., 1993; Lazzarino et al., 1994). Moreover, mutations such as deletion of the tropomyosin I gene, TPM1, or the mitochondrial distribution and morphology gene, MDM20, which selectively destabilize actin cables, result in the loss of polarized mitochondrial movement and reduce transfer of mitochondria into buds (Herman et al., 1997; Simon et al., 1997). Together, these studies indicate that normal mitochondrial inheritance in yeast requires association of mitochondria with actin cables.Cell-free studies reveal a possible mechanism underlying actin control of mitochondrial inheritance. Sedimentation assays document binding of mitochondria to the lateral surface of F-actin. This mitochondrial actin-binding activity is ATP-sensitive, saturable, reversible, and mediated by protein(s) on the mitochondrial surface (Lazzarino et al., 1994). In addition, ATP-driven, actin-dependent motor activity has been identified on the surface of mitochondria (Simon et al., 1995). These observations support a model of mitochondrial inheritance whereby mitochondria use an actin-dependent motor to drive their movement from mother to daughter cells along actin cable tracks.Yeast genetic screens have revealed several genes, collectively referred to as mdm (mitochondrial distribution and morphology) and mmm (maintenance of mitochondrial morphology), which are required for mitochondrial inheritance (McConnell et al., 1990; Burgess et al., 1994; Sogo and Yaffe, 1994). We have focused on two of these genes: MDM10 and MMM1. Deletion of MDM10 leads to the development of giant spherical mitochondria, presumably by the collapse of elongated mitochondria into a spherical mass (Sogo and Yaffe, 1994). Deletion of MMM1 (Burgess et al., 1994) produces a similar phenotype. In both mutants, the fraction of buds without mitochondria is high, indicating defective mitochondrial inheritance. The proteins encoded by these genes, Mdm10p and Mmm1p, appear to be integral membrane proteins in the mitochondrial outer membrane. Here, we report tests of the hypothesis that Mmm1p and Mdm10p are required to link mitochondria to the cytoskeleton. 相似文献
11.
Mathilde Bonnemaison Nils Bäck Yimo Lin Juan S. Bonifacino Richard Mains Betty Eipper 《Traffic (Copenhagen, Denmark)》2014,15(10):1099-1121
The adaptor protein 1A complex (AP‐1A) transports cargo between the trans‐Golgi network (TGN) and endosomes. In professional secretory cells, AP‐1A also retrieves material from immature secretory granules (SGs). The role of AP‐1A in SG biogenesis was explored using AtT‐20 corticotrope tumor cells expressing reduced levels of the AP‐1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non‐condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue‐stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α‐amidating monooxygenase‐1 (PAM‐1), integral membrane enzymes that enter immature SGs. The non‐condensing SGs contained POMC products and PAM‐1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM‐1 into PHM was unaltered, but PHM basal secretion was increased in sh‐μ1A PAM‐1 cells. Despite lacking a canonical AP‐1A binding motif, yeast two‐hybrid studies demonstrated an interaction between the PAM‐1 cytosolic domain and AP‐1A. Coimmunoprecipitation experiments with PAM‐1 mutants revealed an influence of the luminal domains of PAM‐1 on this interaction. Thus, AP‐1A is crucial for normal SG biogenesis, function and composition. 相似文献
12.
13.
Pornparn Kongpracha Pattama Wiriyasermkul Noriyoshi Isozumi Satomi Moriyama Yoshikatsu Kanai Shushi Nagamori 《Molecular & cellular proteomics : MCP》2022,21(5):100206
Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom–up proteomics using LC–MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC–MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein–coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein–protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples. 相似文献
14.
Sensitive Immunoassay Shows Selective Association of Peripheral and Integral Membrane Proteins of the Inhibitory Glycine Receptor Complex 总被引:4,自引:0,他引:4
The inhibitory glycine receptor of mammalian spinal cord is a ligand-gated chloride channel that, on affinity purification, contains two subunits of 48-kilodalton (kD) and 58-kD molecular mass in addition to an associated 93-kD protein. Ligand-binding 48-kD subunit and 93-kD protein were quantified in the CNS of the adult rat using a newly developed dot receptor assay (detection limit less than or equal to 1 fmol/assay) which employs monoclonal antibodies specific for glycine receptor polypeptides. The 93-kD protein was found to codistribute at a fixed stoichiometry with the 48-kD subunit throughout the CNS of the rat. Moreover, the 93-kD protein cofractionated with the ligand-binding subunit on solubilization and affinity chromatography or immunoprecipitation. However, both proteins were separated on sucrose gradient centrifugation of detergent extracts of spinal cord membranes in accord with earlier observations on purified receptor. These data prove that the 93-kD polypeptide is selectively associated with the membrane core of the strychnine-sensitive glycine receptor. The regional distribution of glycine receptor polypeptides was also determined in the CNS of the spastic rat mutant. In contrast to hereditary spasticity in mouse and cattle, no reduction of glycine receptors was found in the spastic rat. 相似文献
15.
Shengping Huang Shufeng Liu Jia J. Fu T. Tony Wang Xiaolan Yao Anil Kumar Gang Liu Mingui Fu 《The Journal of biological chemistry》2015,290(34):20782-20792
It was recently demonstrated that MCPIP1 is a critical factor that controls inflammation and immune homeostasis; however, the relationship between MCPIP1 and other members of this protein family is largely unknown. Here, we report that MCPIP1 interacts with MCPIP4 to form a protein complex, but acts independently in the regulation of IL-6 mRNA degradation. In an effort to identify MCPIP1-interacting proteins by co-immunoprecipitation (Co-IP) and mass-spec analysis, MCPIP4 was identified as a MCPIP1-interacting protein, which was further confirmed by Co-IP and mammalian two-hybrid assay. Immunofluorescence staining showed that MCPIP4 was co-localized with MCPIP1 in the GW-body, which features GW182 and Argonaute 2. Further studies showed that MCPIP1 and MCPIP4 act independently in regulation of IL-6 mRNA degradation. These results suggest that MCPIP1 and MCPIP4 may additively contribute to control IL-6 production in vivo. 相似文献
16.
We have previously demonstrated that subsets of Ssn6/Tup target genes have distinct requirements for the Schizosaccharomyces pombe homologs of the Tup1/Groucho/TLE co-repressor proteins, Tup11 and Tup12. The very high level of divergence in the histone interacting repression domains of the two proteins suggested that determinants distinguishing Tup11 and Tup12 might be located in this domain. Here we have combined phylogenetic and structural analysis as well as phenotypic characterization, under stress conditions that specifically require Tup12, to identify and characterize the domains involved in Tup12-specific action. The results indicate that divergence in the repression domain is not generally relevant for Tup12-specific function. Instead, we show that the more highly conserved C-terminal WD40 repeat domain of Tup12 is important for Tup12-specific function. Surface amino acid residues specific for the WD40 repeat domain of Tup12 proteins in different fission yeasts are clustered in blade 3 of the propeller-like structure that is characteristic of WD40 repeat domains. The Tup11 and Tup12 proteins in fission yeasts thus provide an excellent model system for studying the functional divergence of WD40 repeat domains. 相似文献
17.
18.
Nuclear Involvement in the Appearance of a Chloroplast-Encoded 32,000 Dalton Thylakoid Membrane Polypeptide Integral to the Photosystem II Complex 总被引:5,自引:2,他引:3 下载免费PDF全文
The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts. 相似文献
19.
Structure,Dynamics, Evolution,and Function of a Major Scaffold Component in the Nuclear Pore Complex
Parthasarathy Sampathkumar Seung Joong Kim Paula Upla William J. Rice Jeremy Phillips Benjamin L. Timney Ursula Pieper Jeffrey B. Bonanno Javier Fernandez-Martinez Zhanna Hakhverdyan Natalia E. Ketaren Tsutomu Matsui Thomas M. Weiss David L. Stokes J. Michael Sauder Stephen K. Burley Andrej Sali Michael P. Rout Steven C. Almo 《Structure (London, England : 1993)》2013,21(4):560-571