首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria is an enormous burden on global health that caused 409,000 deaths in 2019. Severe malaria can manifest in the lungs, an illness known as acute respiratory distress syndrome (ARDS). Not much is known about the development of malaria-associated ARDS (MA-ARDS), especially regarding cell death in the lungs. We had previously established a murine model that mimics various human ARDS aspects, such as pulmonary edema, hemorrhages, pleural effusion, and hypoxemia, using DBA/2 mice infected with Plasmodium berghei ANKA. Here, we explored the mechanisms and the involvement of apoptosis in this syndrome. We found that apoptosis contributes to the pathogenesis of MA-ARDS, primarily as facilitators of the alveolar-capillary barrier breakdown. The protection of pulmonary endothelium by inhibiting caspase activation could be a promising therapeutic strategy to prevent the pathogenicity of MA-ARDS. Therefore, intervention in the programmed death cell mechanism could help patients not to develop severe malaria.Subject terms: Immunology, Infection  相似文献   

2.
Human populations are rarely exposed to one pathogen alone. Particularly in high incidence regions such as sub-Saharan Africa, concurrent infections with more than one pathogen represent a widely underappreciated public health problem. Two of the world’s most notorious killers, malaria and tuberculosis, are co-endemic in impoverished populations in the tropics. However, interactions between both infections in a co-infected individual have not been studied in detail. Both pathogens have a major impact on the lung as the prime target organ for aerogenic Mycobacterium tuberculosis and the site for one of the main complications in severe malaria, malaria-associated acute respiratory distress syndrome (MA-ARDS). In order to study the ramifications caused by both infections within the same host we established an experimental mouse model of co-infection between Mycobacterium tuberculosis and Plasmodium berghei NK65, a recently described model for MA-ARDS. Our study provides evidence that malaria-induced immune responses impair host resistance to Mycobacterium tuberculosis. Using the natural routes of infection, we observed that co-infection exacerbated chronic tuberculosis while rendering mice less refractory to Plasmodium. Co-infected animals presented with enhanced inflammatory immune responses as reflected by exacerbated leukocyte infiltrates, tissue pathology and hypercytokinemia accompanied by altered T-cell responses. Our results - demonstrating striking changes in the immune regulation by co-infection with Plasmodium and Mycobacterium - are highly relevant for the medical management of both infections in humans.  相似文献   

3.
SYNOPSIS. Female retired breeder A/J mice were infected with Plasmodium berghei NK65C deme. Those animals which recovered were allowed to recrudesce and were inoculated again with NK65C. Twenty-one weeks after the original challenge, the mice were divided into 2 equal groups. One group was challenged with NK65C and the other with NK65E. Both demes of P. berghei were mosquito derived from NK65. NK65C appeared to give less protection to mice challenged with NK65E deme than to those challenged with the homologous NK65C deme. One mouse which had recovered from infection with NK65C deme died from the NK65E challenge. No definitive conclusions could be drawn regarding antigenic variation and virulence between demes E and C.  相似文献   

4.
The thymus plays an important role shaping the T cell repertoire in the periphery, partly, through the elimination of inflammatory auto-reactive cells. It has been shown that, during Plasmodium berghei infection, the thymus is rendered atrophic by the premature egress of CD4+CD8+ double-positive (DP) T cells to the periphery. To investigate whether autoimmune diseases are affected after Plasmodium berghei NK65 infection, we immunized C57BL/6 mice, which was previously infected with P.berghei NK65 and treated with chloroquine (CQ), with MOG35–55 peptide and the clinical course of Experimental Autoimmune Encephalomyelitis (EAE) was evaluated. Our results showed that NK65+CQ+EAE mice developed a more severe disease than control EAE mice. The same pattern of disease severity was observed in MOG35–55-immunized mice after adoptive transfer of P.berghei-elicited splenic DP-T cells. The higher frequency of IL-17+- and IFN-γ+-producing DP lymphocytes in the Central Nervous System of these mice suggests that immature lymphocytes contribute to disease worsening. To our knowledge, this is the first study to integrate the possible relationship between malaria and multiple sclerosis through the contribution of the thymus. Notwithstanding, further studies must be conducted to assert the relevance of malaria-induced thymic atrophy in the susceptibility and clinical course of other inflammatory autoimmune diseases.  相似文献   

5.
Infection of mice with Plasmodium berghei NK65 represents a well-recognized malaria model in which infection is accompanied by an intense hepatic inflammatory response. Enzyme-inducible nitric oxide synthase is an important regulator of inflammation and leukocyte recruitment in microvessels, but these functions have yet to be evaluated in experimental malaria. In this study, we assessed the involvement of inducible nitric oxide synthase in inflammatory responses to murine experimental malaria induced by P. berghei NK65. We observed that wild type (WT) and nitric oxide synthase (iNOS)-deficient mice (iNOS−/−) mice showed similar levels of parasitemia following P. berghei NK65 infection, although infected iNOS−/− mice presented early mortality. Inducible nitric oxide synthase deficiency led to increased leukocyte rolling and adhesion to the liver in iNOS−/− mice relative to the WT animals, as observed via intravital microscopy. Infected iNOS−/− mice also exhibited increased hepatic leukocyte migration and subsequent liver damage, which was associated with high serum levels of the cytokines TNF-α, IL-6 and IL-10. Our data suggest potential role for the iNOS enzyme as a regulator of hepatic inflammatory response induced by P. berghei NK65-infection, and its absence leads to exacerbated inflammation and sequential associated-hepatic damage in the animals.  相似文献   

6.
SYNOPSIS. Death rates of A/J and CF1 female mice 4 weeks and 6 months of age were compared after the mice were infected with Plasmodium berghei NK65C deme (population) and NK65RR deme. Death rates were compared also when female A/J retired breeder mice were infected with blood passages 18 and 40 of NK65C. NK65C was found to be less virulent than NK65RR. The 40th blood passage of NK65C was more virulent than the 18th passage, but still not as virulent at the NK65RR deme. A/J retired breeders were clearly more resistant to infection than 4 week old A/J mice, while little difference was found in the different age groups of the CF1 mice.  相似文献   

7.
Lung complications during malaria infection can range from coughs and impairments in gas transfer to the development of acute respiratory distress syndrome (ARDS). Infecting C57BL/6 mice with Plasmodium berghei K173 strain (PbK) resulted in pulmonary oedema, capillaries congested with leukocytes and infected red blood cells (iRBCs), and leukocyte infiltration into the lungs. This new model of malaria-associated lung pathology, without any accompanying cerebral complications, allows the investigation of mechanisms leading to the lung disease. The activity of the amiloride-sensitive epithelial sodium channel (ENaC) in alveolar epithelial cells is decreased by several respiratory tract pathogens and this is suggested to contribute to pulmonary oedema. We show that PbK, a pathogen that remains in the circulation, also decreased the activity and expression of ENaC, suggesting that infectious agents can have indirect effects on ENaC activity in lung epithelial cells. The reduced ENaC activity may contribute to the pulmonary oedema induced by PbK malaria.  相似文献   

8.
9.
An attenuated strain of malaria causing limited parasitemia in mice was derived from a highly virulent strain of Plasmodium berghei (NK65) which produced 100% lethality in mice. A pool of mouse blood infected with the original highly virulent P. berghei was exposed to 40 Krad irradiation and parasites were inoculated into nude mice as well as into thymus competent normal littermates. Thymus competent mice showed no parasitemia, while one out of the five nude mice inoculated with the irradiated parasites developed a slow and progressive parasitemia. These parasites induced a self-limiting parasitemia in thymus competent mice, even when a large inoculum was administered. Maintenance of the low virulence strain required passage through nude mice. After 50 passages at two weekly intervals, reversion to virulence did not occur. A single vaccination with the attenuated strain induced immunity in mice against a challenge inoculation with the original virulent strain. Specific IgG persisted at high titer for more than 9 weeks in mice receiving a single inoculation of the attenuated strain.  相似文献   

10.
Seakem-9 calcium carrageenan, a reported anti-macrophage agent, was found to confer partial immunity in mice subsequently challenged with 5 × 105Plasmodium berghei NK65A parasitized erythrocytes. Transient parasitemias and significantly extended survival times were evident in carrageenantreated animals. It was suggested that carrageenan may have enhanced nonspecific cellular immunological mechanisms or affected specific immune reactions through the cytotoxicity to suppressor macrophages.  相似文献   

11.
Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.  相似文献   

12.
Red blood cells from mice infected with Plasmodium berghei and from uninfected mice were labeled with stable, free radical derivatives of stearic acid. Electron spin resonance spectra of these samples showed that the degree of molecular order in these membranes decreased, and the rate of motion of the probe increased, with increasing levels of parasitemia. Parasitemia increased the ratio of unsaturated to saturated 18-carbon fatty acids, and decreased the percentage of arachidonic acid and of cholesterol. The effects of parasitemia on the membrane properties correlated with decreases in cholesterol/fatty acid ratios.  相似文献   

13.
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection associated with impaired cerebral blood flow. Visualization of the eye vasculature, which is embryologically derived from that of the brain, is used clinically to diagnose the syndrome. Here, we introduce camera‐phone laser speckle imaging as a new tool for in vivo, noncontact two‐dimensional mapping of blood flow dynamics in the experimental cerebral malaria (ECM) murine model of Plasmodium berghei ANKA. In a longitudinal study, we show that the camera‐phone imager can detect an overall decrease in the retinal blood‐flow‐speed (BFS) as ECM develops in P. berghei ANKA infected mice, with no similar change observed in uninfected control mice or mice infected with a non‐ECM inducing strain (P. berghei NK65). Furthermore, by analyzing relative alterations in the BFS of individual retinal vessels during the progression of ECM, we illustrate the strength of our imager in identifying different BFS‐change heterogeneities in the retinas of ECM and uninfected mice. The technique creates new possibilities for objective investigations into the diagnosis and pathogenesis of CM noninvasively through the eye. The camera‐phone laser speckle imager along with measured spatial blood perfusion maps of the retina of a mouse infected with P. berghei ANKA—a fatal ECM model—on different days during the progression of the infection (top, day 3 after infection; middle, day 5 after infection; and bottom, day 7 after infection).   相似文献   

14.
The RNA from spleens and lymph nodes of Lewis rats immune to Plasmodium berghei protected A/J mice against a lethal challenge of the blood stages of P. berghei, NK65. The RNA was extracted by the hot phenol procedure from freshly removed spleens and lymph nodes. Protection was measured by survival and level of parasitemia as compared to controls. The levels of RNA administered were 10, 50, and 100 μg of RNA. There was observed 100% survival with 50 and 100 μg of immune spleen RNA. The maximum percentage of parasitemia was not reduced below that of the controls in the groups given immune RNA from lymph nodes, but was significantly reduced below that of the controls in the groups given immune RNA from spleens.  相似文献   

15.
Malaria is a hazardous disease caused by Plasmodium parasites and often results in lethal complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Parasite sequestration in the microvasculature is often observed, but its role in malaria pathogenesis and complications is still incompletely understood. We used skeleton binding protein-1 (SBP-1) KO parasites to study the role of sequestration in experimental MA-ARDS. The sequestration-deficiency of these SBP-1 KO parasites was confirmed with bioluminescence imaging and by measuring parasite accumulation in the lungs with RT-qPCR. The SBP-1 KO parasites induced similar lung pathology in the early stage of experimental MA-ARDS compared to wildtype (WT) parasites. Strikingly, the lung pathology resolved subsequently in more than 60% of the SBP-1 KO infected mice, resulting in prolonged survival despite the continuous presence of the parasite. This spontaneous disease resolution was associated with decreased inflammatory cytokine expression measured by RT-qPCR and lower expression of cytotoxic markers in pathogenic CD8+ T cells in the lungs of SBP-1 KO infected mice. These data suggest that SBP-1-mediated parasite sequestration and subsequent high parasite load are not essential for the development of experimental MA-ARDS but inhibit the resolution of the disease.  相似文献   

16.
Natural killer (NK) cells have different roles in the host response against Plasmodium-induced malaria depending on the stage of infection. Liver NK cells have a protective role during the initial hepatic stage of infection by production of the TH1-type cytokines IFN-γ and TNF-α. In the subsequent erythrocytic stage of infection, NK cells also induce protection through Th1-type cytokines but, in addition, may also promote development of cerebral malaria via CXCR3-induction on CD8+ T cells resulting in migration of these cells to the brain. We have recently shown that the regulatory Ly49E NK receptor is expressed on liver NK cells in particular. The main objective of this study was therefore to examine the role of Ly49E expression in the immune response upon Plasmodium berghei ANKA infection, for which we compared wild type (WT) to Ly49E knockout (KO) mice. We show that the parasitemia was higher at the early stage, i.e. at days 6–7 of Plasmodium berghei ANKA infection in Ly49E KO mice, which correlated with lower induction of CD69, IFN-γ and TNF-α in DX5 liver NK cells at day 5 post-infection. At later stages, these differences faded. There was also no difference in the kinetics and the percentage of cerebral malaria development and in lymphocyte CXCR3 expression in WT versus Ly49E KO mice. Collectively, we show that the immune response against Plasmodium berghei ANKA infection is not drastically affected in Ly49E KO mice. Although NK cells play a crucial role in Plasmodium infection and Ly49E is highly expressed on liver NK cells, the Ly49E NK receptor only has a temporarily role in the immune control of this parasite.  相似文献   

17.
Heat inactivated Plasmodium berghei-infected blood acted as a vaccine against P. berghei infection in mice. The heat inactivated blood was noninfective. Intact or splenectomized vaccine-treated mice, as well as P. berghei susceptible mice inoculated with whole blood or homogenized spleens from vaccine-treated animals, did not become infected. A/J, DDS and Carworth CF1 mice were all protected against P. berghei challenge after vaccination. A/J and DDS mice developed good immunity after a single vaccination injection. Similar levels of immunity were obtained in CF1 mice after at least two vaccine injections. Immunized mice responded to P. berghei challenge with mild anemias and low level parasitemias. Resolution of infection occurred between the first and third weeks after challenge. Nonvaccinated mice developed progressive anemia and parasitemia during the same time period. The immunity appears to be caused by P. berghei antigens; it could not be induced by homologous or heterologous noninfected red blood cells, P. gallinaceum-infected blood or Freund's Complete Adjuvant.  相似文献   

18.
IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33 and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type, IL-25?/?, IL-33?/? and TSLP receptor (TSLPR)?/? mice with Plasmodium berghei (P. berghei) ANKA, a murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain, liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not critical for host defense against P. berghei ANKA.  相似文献   

19.
This study investigated the susceptibility of female C57Bl/6 and Swiss Albino mice to oxidative stress and neurotransmitters activity induced by Plasmodium berghei. On day 9 p.i. with P. berghei infected erythrocytes, the mice reduced in weight. This weight loss was markedly higher in SW mice and reached about ?14%. Also, the infection was able to cause oxidative damage to the brain tissue. Catalase activity as well as glutathione, malondialdehyde and nitric oxide levels were different in the two mice strains. Moreover, the brain content of neurotransmitters, epinephrine, norepinephrine, dopamine and serotonin in mice brain was higher in SW mice than B6 mice. We concluded that, the strain of mice is one factor that could alter the response of mice to P. berghei infection.  相似文献   

20.
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号