首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Hypoxia and inflammation are hallmarks of critical illness, related to multiple organ failure. A possible mechanism leading to multiple organ failure is hypoxia- or inflammation-induced down-regulation of the detoxifying glyoxalase system that clears dicarbonyl stress. The dicarbonyl methylglyoxal (MGO) is a highly reactive agent produced by metabolic pathways such as anaerobic glycolysis and gluconeogenesis. MGO leads to protein damage and ultimately multi-organ failure. Whether detoxification of MGO into D-lactate by glyoxalase functions appropriately under conditions of hypoxia and inflammation is largely unknown. We investigated the effect of inflammation and hypoxia on the MGO pathway in humans in vivo.Methods: After prehydration with glucose 2.5% solution, ten healthy males were exposed to hypoxia (arterial saturation 80–85%) for 3.5 h using an air-tight respiratory helmet, ten males to experimental endotoxemia (LPS 2 ng/kg i.v.), ten males to LPS+hypoxia and ten males to none of these interventions (control group). Serial blood samples were drawn, and glyoxalase-1 mRNA expression, MGO, methylglyoxal-derived hydroimidazolone-1 (MG-H1), D-lactate and L-lactate levels, were measured serially.Results: Glyoxalase-1 mRNA expression decreased in the LPS (β (95%CI); -0.87 (-1.24; -0.50) and the LPS+hypoxia groups; -0.78 (-1.07; -0.48) (P<0.001). MGO was equal between groups, whereas MG-H1 increased over time in the control group only (P=0.003). D-Lactate was increased in all four groups. L-Lactate was increased in all groups, except in the control group.Conclusion: Systemic inflammation downregulates glyoxalase-1 mRNA expression in humans. This is a possible mechanism leading to cell damage and multi-organ failure in critical illness with potential for intervention.  相似文献   

2.
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid–liquid separation of the KWSS, the addition of Fe3+ during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe3+ addition), the flux to the EMP with the addition of Fe3+ (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe3+ also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l−1, an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn2+ showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution.  相似文献   

4.
Fe3O4 (Fe3O4-CS) coated with magnetic chitosan was prepared as an adsorbent for the removal of Orange I from aqueous solutions and characterized by FTIR, XRD, SEM, TEM and TGA measurements. The effects of pH, initial concentration and contact time on the adsorption of Orange I from aqueous solutions were investigated. The decoloration rate was higher than 94% in the initial concentration range of 50–150 mg L−1 at pH 2.0. The maximum adsorption amount was 183.2 mg g−1 and was obtained at an initial concentration of 400 mg L−1 at pH 2.0. The adsorption equilibrium was reached in 30 minutes, demonstrating that the obtained adsorbent has the potential for practical application. The equilibrium adsorption isotherm was analyzed by the Freundlich and Langmuir models, and the adsorption kinetics were analyzed by the pseudo-first-order and pseudo-second-order kinetic models. The higher linear correlation coefficients showed that the Langmuir model (R2 = 0.9995) and pseudo-second-order model (R2 = 0.9561) offered the better fits.  相似文献   

5.
The potential of carbonaceous Hibiscus cannabinus L. plant for use in the treatment of oil- and heavy metal-contaminated water is explored. The results from this work demonstrated that the material from this source was capable of sequestering oil and metal ions from the aqueous solutions. The maximum sorption to saturation capacities for diesel and cooking oil were 35 and 30 g g−1, respectively, well above that of the commercial adsorbent. The carbonaceous material was also effective for sequestering Mn2+, Cu2+ and Fe2+. The equilibrium of metal ions adsorption was attained after 30 min for Mn2+ and Cu2+, and 60 min for Fe2+ solutions. The sorption of the metal ions was in the order of Mn2+ > Cu2+ > Fe2+, increased with increase in the dosage in the range between 60% and 92% removal, depending on the dosage amount. The quantitative removal of Mn2+, Cu2+, and Fe2+ at pH 4.5, 50 mg L−1 initial concentration after 150 min equilibration time was 91.2%, 86.0% and 81.0%, respectively.  相似文献   

6.
Nutrient and heavy metal pollutions are major concern worldwide. This study aimed at comparing the effect of Ni2+ on nutrient removal efficiency of four indigenous wastewater protozoan species (Aspidisca sp., Paramecium sp., Peranema sp., Trachelophyllum sp.). Specific physicochemical parameters and microbial growth/die-off were measured using standard methods. The results revealed that protozoan species were able to simultaneously remove phosphate, nitrate and Ni2+ at concentrations ranging between 66.4–99.36%, 56.19–99.88% and 45.98–85.69%, respectively. Peranema sp. appeared to be the isolates with the highest removal of nutrients (Phosphate-99.36% and Nitrate-99.88%) while Paramecium sp. showed higher removal of Ni2+ at 85.69% and low removal of nutrients. Aspidisca sp. was the most sensitive isolate to Ni2+ but with significant nutrient removal (Phosphate-66.4% and Nitrate-56.19%) at 10 mg-N2+/L followed by an inhibition of nutrient removal at Ni2+ concentration greater than 10 mg/L. Significant correlation between the growth rate and nutrient removal (= 0.806/0.799, < 0.05 for phosphate and nitrate, respectively) was noted. Except for Peranema sp. which revealed better nutrient removal ability at 10 mg-Ni2+/L, an increase in Ni2+ concentration had a significant effect on nutrient removal efficiency of these indigenous protozoan species. This study suggests that although Ni2+ appeared to be toxic to microbial isolates, its effect at a low concentration (10 mg-Ni2+/L) towards these isolates can be used to enhance the wastewater treatment process for the removal of nutrients. Peranema sp., which was able to remove both Ni2+ and nutrients from wastewater mixed-liquor, can also be used for bioremediation of wastewater systems.  相似文献   

7.
ObjectiveAcute liver failure is usually associated with inflammation and oxidation of hepatocytes and has high mortality and resource costs. Mesenchymal stem cell (MSCs) has occasionally been reported to have no beneficial effect due to poor transplantation and the survival of implanted cells. Recent studies showed that embryonic stem cell (ESC)‐derived MSCs are an alternative for regenerative medicine. On the other hand, graphene‐based nanostructures have proven useful in biomedicine. In this study, we investigated whether magnetic graphene oxide (MGO) improved the effects of ESC‐MSC conditioned medium (CM) on protecting hepatocytes and stimulating the regeneration of damaged liver cells.Materials and methodsTo provide a rat model of acute liver failure, male rats were injected intraperitoneally with carbon tetrachloride (CCl4). The rats were randomly divided into six groups, namely control, sham, CCl4, ESC‐MSC‐CM, MGO and ESC‐MSC‐CM + MGO. In the experimental groups, the rats received, depending on the group, 2 ml/kg body weight CCl4 and either ESC‐MSC‐CM with 5 × 106 MSCs or 300 μg/kg body weight MGO or both. Symptoms of acute liver failure appeared 4 days after the injection. All groups were compared and analysed both histologically and biochemically 4 days after the injection. Finally, the results of ESC‐MSC‐CM and MSC‐CM were compared.ResultsThe results indicated that the use of MGO enhanced the effect of ESC‐MSC‐CM on reducing necrosis, inflammation, aspartate transaminase, alanine aminotransferase and alkaline phosphatase in the CCl4‐induced liver failure of the rat model. Also, the expression of vascular endothelial growth factor and matrix metalloproteinase‐9 (MMP‐9) was significantly upregulated after treatment with MGO. Also, the results showed that the ESC‐MSC‐CM has more efficient effective compared to MSC‐CM.ConclusionMagnetic graphene oxide improved the hepatoprotective effects of ESC‐MSC‐CM on acute liver damage, probably by suppressing necrosis, apoptosis and inflammation of hepatocytes.  相似文献   

8.
Abstract

In this paper, we describe a series of laboratory experiments which quantify the rate of Cr6+ reduction by Fe0. The main goal of these experiments was to determine the removal efficiency of Cr6+ by iron. The results indicate that Fe0 reduces Cr6+ to Cr3+ under alkaline and slightly acidic conditions. The removal efficiency rises with an increase of the initial concentration of Cr6+ (1 mg/L to 10 mg/L) when the quantity of Fe0 is stable. The removal efficiency increases as the quantity of Fe0 is raised when other conditions are constant. The removal efficiency would not be affected by other inorganic ions unless they were present at very high concentrations. When the initial concentration Cr6+ is 10mg/L and pH is 6.5–7.7, the final concentration of Cr6+ in effluent is less than 0.05 mg/L and the total Fe is less than 0.3 mg/L in effluent.  相似文献   

9.
Aspergillus fumigatus removed uranium(VI) very rapidly and reached equilibrium within 1 h of contact of biomass with the aqueous metal solution. Biosorption data fitted to Langmuir model of isotherm and a maximum loading capacity of 423 mg U g–1 dry wt was obtained. Distribution coefficient as high as 10,000 (mg U g–1)/(mg U ml–1) at a residual metal ion concentration of 19 mg l–1 indicates its usefulness in removal of uranium(VI) from dilute waste streams. Optimum biosorption was seen at pH 5.0 and was independent of temperature (5–50°C ). Initial metal ion concentration significantly influenced uptake capacity which brought down % (w/w) uranium(VI) removal from 90 at 200 mg U l–1 to 35 at 1000 mg U l–1. Presence of 0.84 mmol Fe2+, Fe3+, Ca2+ and Zn2+ had no effect on uranium(VI) biosorption unlike Al3+ (0.84 mM) which was inhibitory.  相似文献   

10.
The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB.  相似文献   

11.
Iron has a central role in bioleaching and biooxidation processes. Fe2+ produced in the dissolution of sulfidic minerals is re-oxidized to Fe3+ mostly by biological action in acid bioleaching processes. To control the concentration of iron in solution, it is important to precipitate the excess as part of the process circuit. In this study, a bioprocess was developed based on a fluidized-bed reactor (FBR) for Fe2+ oxidation coupled with a gravity settler for precipitative removal of ferric iron. Biological iron oxidation and partial removal of iron by precipitation from a barren heap leaching solution was optimized in relation to the performance and retention time (τFBR) of the FBR. The biofilm in the FBR was dominated by Leptospirillum ferriphilum and “Ferromicrobium acidiphilum.” The FBR was operated at pH 2.0 ± 0.2 and at 37 °C. The feed was a barren leach solution following metal recovery, with all iron in the ferrous form. 98–99% of the Fe2+ in the barren heap leaching solution was oxidized in the FBR at loading rates below 10 g Fe2+/L h (τFBR of 1 h). The optimal performance with the oxidation rate of 8.2 g Fe2+/L h was achieved at τFBR of 1 h. Below the τFBR of 1 h the oxygen mass transfer from air to liquid limited the iron oxidation rate. The precipitation of ferric iron ranged from 5% to 40%. The concurrent Fe2+ oxidation and partial precipitative iron removal was maximized at τFBR of 1.5 h, with Fe2+ oxidation rate of 5.1 g Fe2+/L h and Fe3+ precipitation rate of 25 mg Fe3+/L h, which corresponded to 37% iron removal. The precipitates had good settling properties as indicated by the sludge volume indices of 3–15 mL/g but this step needs additional characterization of the properties of the solids and optimization to maximize the precipitation and to manage sludge disposal.  相似文献   

12.
Palo podrido (literally, rotted log) and iron chelating compounds associated with it were characterized. Field-collected samples taken from palo podrido were sorted visually into three groups representing early, and two stages of advanced delignification (termed as EDS, ADS1 and ADS2, respectively). Lignin contents in these samples were 22.3%, 5.1% and 4.6%, respectively. Ethyl acetate extracts from ADS1 and ADS2 samples contained several aromatic carboxylic acids. Dihydroxyterephtalic acid was detected as the major compound in ADS1 extract and was found at low concentrations in ADS2 extract. Only the ADS1 extract exhibited a significant iron reduction activity, reducing 3.1% of an initial 500 μMFe3+ solution after the first minute of reaction. After 10 min reaction, 9.5% of the initial Fe3+ was reduced. Reduction activity expressed on the basis of extracted dry mass of ADS1 was 12.5 μmol of Fe3+ reduced/min/kg of dry wood.  相似文献   

13.
We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ∼70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.  相似文献   

14.
The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil.  相似文献   

15.
The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation–contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose–response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation–contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation–contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.  相似文献   

16.
1. The main products of the metabolism of 7,12-dimethylbenz[a]anthracene by rat-liver homogenates are the isomeric monohydroxymethyl derivatives. The syntheses of these compounds are described. 2. Two phenolic products and two dihydrodihydroxy compounds were formed, but none of these appeared to have been formed by hydroxylation at the `K region''. There was little evidence for the formation of a glutathione conjugate of the hydrocarbon. 3. The monohydroxymethyl derivatives are products of the hydroxylation of the hydrocarbon in the ascorbic acid–Fe2+–oxygen model hydroxylating system.  相似文献   

17.
1. The main products of the metabolism of 7,12-dimethylbenz[a]anthracene by rat-liver homogenates are the isomeric monohydroxymethyl derivatives. The syntheses of these compounds are described. 2. Two phenolic products and two dihydrodihydroxy compounds were formed, but none of these appeared to have been formed by hydroxylation at the `K region'. There was little evidence for the formation of a glutathione conjugate of the hydrocarbon. 3. The monohydroxymethyl derivatives are products of the hydroxylation of the hydrocarbon in the ascorbic acid–Fe2+–oxygen model hydroxylating system.  相似文献   

18.
The present study demonstrated the growth of two species of cyanobacteria on wastewater isolated from sewage plant in Aswan, Egypt. We evaluated their efficiency for eliminating nitrogen, phosphorus, chemical oxygen demand (COD) and heavy metals (Fe2+, Pb2+, Cu2+, and Mn2+). The growth of Cyanosarcina fontana has supported wastewater as a growth medium than Anabaena oryzae compared to standard medium. The nutrients concentration such as COD, NO3–N and PO4–P were decreased by the growth of A. oryzae and C. fontana in the wastewater after primary settling and centrate. However, the reduction of COD was less efficient than the other nutrients. The reduction percentage of COD, NO3–N and PO4–P reached 39.3, 84.1 and 90.7% as well as 54.6, 83.1, and 89.8%, in cultures of A. oryzae and C. fontana grown in the wastewater after primary settling, respectively. The reduction amounted to 10.1, 76.8, and 63.0% by A. oryzae and 43.2, 62.1, and 74.8% by C. fontana, grown in the centrate, respectively. Cyanobacteria species have the ability to accumulate the heavy metals from the wastewater to level far than the exceeding metal level in the water. Whereas, the heavy metals biosorption performance of C. fontana was higher in accumulating Fe2+ (93.95%), Pb2+ (81.21%), Cu2+ (63.9%), and Mn2+ (48.49%) compared to A. oryzae. The biosorption ability is dependent on the nature of the adsorbent studied and the type of wastewater treated. Therefore, removal of heavy metals and nutrients by the tested algae is strongly recommended as a powerful technique for the removal of pollutants from wastewater.  相似文献   

19.
Ligninolytic bacteria degrading lignin were isolates and identified, and their biodegradation mechanism of alkaline-lignin was investigated. Four strains with lignin degradation capability were screened and identified from the soil, straw, and silage based on their decolorizing capacity of aniline blue and colony size on alkaline-lignin medium. The degradation ratio of Bacillus aryabhattai BY5, Acinetobacter johnsonii LN2, Acinetobacter lwoffii LN4, and Micrococcus yunnanensis CL32 have been assayed using alkaline-lignin as the unique carbon source. Further, the Lip (lignin peroxidase) and Mnp (manganese peroxidase) activities of strains were investigated. Lip activity of A. lwoffii LN4 was highest after 72 h of incubation and reached 7151.7 U · l–1. Mnp activity of M. yunnanensis CL32 was highest after 48 h and reached 12533 U · l–1. The analysis of alkaline-lignin degradation products by GC-MS revealed that the strains screened could utilize aromatic esters compounds such as dibutyl phthalate (DBP), and decomposite monocyclic aromatic compounds through the DBP aerobic metabolic pathway. The results indicate that B. aryabhattai BY5, A. johnsonii LN2, A. lwoffii LN4, and M. yunnanensis CL32 have high potential to degrade alkaline-lignin, and might utilize aromatic compounds by DBP aerobic metabolic pathway in the process of lignin degradation.Key words: isolation, bacteria, alkali-lignin, biodegradation products  相似文献   

20.
《Process Biochemistry》2007,42(10):1371-1377
By combining two functions of alginate gel and activated carbon, an activated carbon-containing alginate bead (AC-AB) adsorbent was developed and successfully used to simultaneously remove heavy metal ions and toxic organics. Quantitative analysis showed that almost all of the adsorption of toxic organics, such as p-toluic acid, is caused by the activated carbon in the AC-AB adsorbent, whereas the alginate component has a major role in the removal of heavy metals. A 50-L solution containing eight heavy metals (Pb2+, Mn2+, Cd2+, Cu2+, Zn2+, Fe2+, Al3+ and Hg2+) and four mineral ions was run continuously through a filter cartridge packed with 160 g of the AC-AB adsorbent. The adsorbent showed a high capacity to remove heavy metals completely from the water, while allowing essential minerals, such as K+, Na+, Mg2+ and Ca2+, to pass through the filter. The adsorbent could be regenerated using eluents, such as HNO3, and reused repeatedly without considerable loss of its metal uptake capacity through 10 subsequent cycles of adsorption and desorption. With its high capacity and high selectivity for toxic heavy metals, the AC-AB adsorbent has enormous potential for application in drinking water treatment technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号