首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The perennial stoloniferous herbaceous vine Mikania micrantha H.B.K. is among the most noxious exotic invaders in China and the world. Disturbance can fragment stolons of M. micrantha and disperse these fragments over long distances or bury them in soils at different depths. To test their regeneration capacity, single-node stolon fragments with stolon internode lengths of 0, 3, 6 and 12 cm were buried in soil at 0, 2, 5 and 8 cm depths, respectively. The fragments were growing for nine weeks, and their emergence status, growth and morphological traits were measured. The results indicated that increasing burial depth significantly decreased survival rate and increased the emergence time of the M. micrantha plants. At an 8-cm burial depth, very few fragments (2.19%) emerged and survived. Burial did not affect the total biomass and root to shoot ratio of the surviving M. micrantha plants that emerged from the 0- and 2-cm burial depths. Increasing internode length significantly increased survival rate and growth measures, but there was no interaction effect with burial depth for any traits measured. These results suggest that M. micrantha can regenerate from buried stolon fragments, and thus, disturbance may contribute to the spread of this exotic invader. Any human activities producing stolon fragments or facilitating dispersal should be avoided.  相似文献   

2.
Despite well-documented negative impacts of invasive species on native biota, evidence for the facilitation of native organisms, particularly by habitat-forming invasive species, is increasing. However, most of these studies are conducted at the population or community level, and we know little about the individual fitness consequences of recruitment to habitat-forming invasive species and, consequently, whether recruitment to these habitats is adaptive. We determined the consequences of recruitment to the invasive green alga Caulerpa taxifolia on the native soft-sediment bivalve Anadara trapezia and nearby unvegetated sediment. Initially, we documented the growth and survivorship of A. trapezia following a natural recruitment event, to which recruitment to C. taxifolia was very high. After 12 months, few clams remained in either habitat, and those that remained showed little growth. Experimental manipulations of recruits demonstrated that all performance measures (survivorship, growth and condition) were significantly reduced in C. taxifolia sediments compared to unvegetated sediments. Exploration of potential mechanisms responsible for the reduced performance in C. taxifolia sediments showed that water flow and water column dissolved oxygen (DO) were significantly reduced under the canopy of C. taxifolia and that sediment anoxia was significantly higher and sediment sulphides greater in C. taxifolia sediments. However, phytoplankton abundance (an indicator of food supply) was significantly higher in C. taxifolia sediments than in unvegetated ones. Our results demonstrate that recruitment of native species to habitat-forming invasive species can reduce growth, condition and survivorship and that studies conducted at the community level may lead to erroneous conclusions about the impacts of invaders and should include studies on life-history traits, particularly juveniles.  相似文献   

3.
《Aquatic Botany》2007,87(3):196-202
We use two experiments to assess the role of anthropogenic activities in disseminating the invasive alga, Caulerpa taxifolia. First, we tested the hypothesis that the removal of fragments of C. taxifolia from an estuary would be dependent on anchor type (sand versus rock) and anchor attachment (chain versus rope). Second, we hypothesised that the viability of different sized clumps (1, 5 and 10 g dry weight) of C. taxifolia would be dependent on aerial exposure (1 h, 1 day and 3 days) and environmental conditions (sun versus shade, damp rope versus no rope). Fragments of C. taxifolia were consistently removed by anchors regardless of the anchor type; overall, 82% of anchors lowered into C. taxifolia beds removed fragments. Rock and sand anchors removed similar sized clumps of C. taxifolia (up to 15 g dry weight), while chain attachments removed significantly larger clumps compared to ropes (up to 0.5 g dry weight). Once removed from the water, fragment survivorship increased with clump size, protection from desiccation (i.e. greatest under damp shaded ropes) and decreased with length of aerial exposure. Most shaded clumps survived 1 h of aerial exposure, while none, irrespective of their size, survived 3 days. Our study confirms that the anchoring of vessels removes fragments of C. taxifolia from estuaries and that conditions inside anchor lockers may enhance fragment survivorship. Thus, vessels may be an important vector for dispersal of C. taxifolia within and between estuaries.  相似文献   

4.
Caulerpa taxifolia and C. racemosa are tropical green algae now found in the Mediterranean, where the former was accidentally introduced and the latter presumably also introduced; both species have spread rapidly and invaded a variety of habitats. Since 1996, the two algae have co-inhabited a region along the Tuscan coast near Livorno. The present study has been carried out to evaluate the invasive capacity of the two species. After one year, the increase in surface area was 67.5 % for C. taxifolia and 284.8 % for C. racemosa, while the increase in patch number was 11.4 % and 121.4 % respectively. The stolon growth of the two algae followed a similar trend, as is showing the same temporal variations with the maximum growth rate between August and October. At the end of the study period, the increase in stolon length and number was significantly higher in C. racemosa than in C. taxifolia. The results of the present study show a higher invasive potential in C. racemosa than in C. taxifolia, although further studies are necessary to evaluate the competition between the two algae and the effect of their simultaneous presence on the benthic community.  相似文献   

5.
单叶蔓荆(Vitex trifolia var.simplicifoli)是一种耐盐、耐旱固沙地被植物。依据海滨沙地自然沙埋特点对单叶蔓荆匍匐茎进行了不同厚度(半埋和全埋)和不同长度交叉沙埋处理,研究探讨了单叶蔓荆沙埋适应生长对策,为其开发利用、科学管理和海滨环境修复提供指导。结果表明,正常情况下,单叶蔓荆匍匐茎基部和中部生长缓慢,顶部生长快。轻度(沙埋匍匐茎基部)和中度(沙埋匍匐茎基部和中部)半埋和全埋使匍匐茎顶部生长加速,茎长增长量较对照高出1.5到3.1倍;但重度(沙埋整个匍匐茎)半埋和全埋使匍匐茎顶部净增长量减少12%和13%。在20d沙埋中,对照整个匍匐茎各段均无不定根长出,但不同程度半埋和全埋沙埋处理下沙下匍匐茎上均长出不定根,重度半埋使不定根生长受抑;同时匍匐茎上各段茎生物量上升,枝叶生物量下降,且随着沙埋程度的增加而增减幅度提高,在重度半埋和全埋达到最大。在轻度和中度半埋和全埋下,匍匐茎上未沙埋部位枝条生长加速。研究表明,在自然环境中,单叶蔓荆匍匐茎顶端是一个对环境变化反应敏感的部位,并与沙埋后单叶蔓荆茎延伸生长和植株能否生存密切相关。当匍匐茎顶部没被沙埋时,沙埋促进沙埋部位匍匐茎和枝叶中物质转移,加速匍匐茎顶部快速生长和物质积累以弥补沙埋带来的损伤维持物质和能量的代谢平衡。沙埋后,单叶蔓荆以茎顶端快速生长、形成不定根、枝条生长维持茎水分平衡和能量和物质代谢平衡,以快速生长摆脱沙埋影响的生长方式为其对沙埋环境的重要适应对策。因此,在海岸沙地单叶蔓荆种群管理和维护中,在强风移沙引起的重度沙埋后,及时剥离匍匐茎顶部沙子对维护单叶蔓荆种群的延续生存和扩散均有重要作用。  相似文献   

6.
Dong BC  Liu RH  Zhang Q  Li HL  Zhang MX  Lei GC  Yu FH 《PloS one》2011,6(9):e23942
Disturbance can fragment plant clones into different sizes and unstabilize soils to different degrees, so that clonal fragments of different sizes can be buried in soils at different depths. As a short-term storage organ, solon internode may help fragmented clones of stoloniferous plants to withstand deeper burial in soils. We address (1) whether burial in soils decreases survival and growth of small clonal fragments, and (2) whether increasing internode length increases survival and growth of small fragments under burial. We conducted an experiment with the stoloniferous, invasive herb Alternanthera philoxeroides, in which single-node fragments with stolon internode of 0, 2, 4 and 8 cm were buried in soils at 0, 2, 4 and 8 cm depth, respectively. Increasing burial depth significantly reduced survival of the A. philoxeroides plants and increased root to shoot ratio and total stolon length, but did not change growth measures. Increasing internode length significantly increased survival and growth measures, but there was no interaction effect with burial depth on any traits measured. These results indicate that reserves stored in stolon internodes can contribute to the fitness of the A. philoxeroides plants subject to disturbance. Although burial reduced the regeneration capacity of the A. philoxeroides plants, the species may maintain the fitness by changing biomass allocation and stolon length once it survived the burial. Such responses may play an important role for A. philoxeroides in establishment and invasiveness in frequently disturbed habitats.  相似文献   

7.
Clonal plants in highly disturbed habitats are often broken into small fragments of various sizes and buried at various soil depths. As a storage organ, rhizome fragments play an important role in enabling plants to survive in such habitats. But few studies have been concerned about the regenerative capacity of rhizome fragments of clonal shrubs of different rhizome diameter and at different burial depths. Here, we investigated whether deeper burial decreased, and diameter of the rhizome fragment increased, the regenerative capacity of a clonal shrub. Research samples of rhizome fragment (rhizome diameters of 2, 5, 10, 15, and 20 mm) of the clonal shrub Calligonum arborescens were buried at different depths (0, 1, 5, 10, and 20 cm). Increasing the diameter of the rhizome fragments significantly increased the survival rate of fragments, and increased the above-ground, below-ground and total biomass production of fragments. Vegetative reproduction ability also increased with an increase in diameter of the rhizome fragments. With an increase in sand burial depth, above-ground, below-ground, total biomass production and vegetative reproduction ability first decreased and then increased, and no fragments survived at the 0 cm burial depth. These results indicate that sand burial depth and diameter of the rhizome fragments significantly affected the regeneration capacity of C. arborescens. Sand burial is one of the essential prerequisites for C. arborescens rhizome fragments’ survival. Moderate burial depth (5 cm) and larger fragment diameter (20 mm diameter) were more suitable for biomass production and vegetative reproduction. These results indicate that reserves stored in rhizome fragments can contribute greatly to the regeneration capacity of the C. arborescens—responses that are very important for C. arborescens survival and establishment in frequently disturbed habitats.  相似文献   

8.
Biological invasions modify the quality and supply of detrital subsidies to aquatic and terrestrial ecosystems. Where the invader has very different traits to native species, major changes in associated consumer communities may result, as a consequence of differences in their nutritional value and effects on the sedimentary habitat. We assessed how the replacement of seagrasses with the invasive alga Caulerpa taxifolia in modified Australian estuaries influences invertebrate communities of mudflats that are subsidized by detritus from submerged aquatic vegetation. Two months after experimental enrichment of sediments with high (60?g dry weight per 0.25?m2 plot) or low (30?g dry weight) quantities of either non-native C. taxifolia or native Posidonia australis or Zostera capricorni detritus, there were positive effects of detrital addition on invertebrate abundance that occurred irrespective of the resource added. By 4?months after addition, however, detritus from invasive C. taxifolia had produced effects on benthic communities that could not be replicated by detritus from either of the native seagrasses. Plots receiving the high loading of C. taxifolia detritus contained fewer invertebrates than plots of the other treatments, perhaps due to the induction of sediment hypoxia. The pattern, however, reversed at low detrital loading, with the plots receiving 30?g of C. taxifolia containing more invertebrates and more taxa than the other plots, presumably due to the greater resource availability for detritivores. Our results demonstrate that replacement of native seagrass with invasive algal detritus can have large impacts on sediment-dwelling communities.  相似文献   

9.
选择烟台海岸沙地抗沙埋强的单叶蔓荆(Vitex trifolia var.simplicifolia)为试材,在自然环境条件下根据单叶蔓荆匍匐茎长度进行了轻度(1/3茎长)、中度(2/3茎长)和重度半埋以及全埋处理。在沙埋20d后,测定了不同沙埋处理下匍匐茎各段上匍匐茎长度、枝条高度、不定根长度,以及可溶性糖、淀粉、纤维素含量,以探讨单叶蔓荆碳水化合物变化和转化在其耐沙埋中作用。结果显示,在轻度、中度半埋和全埋下单叶蔓荆匍匐茎长度均显著大于对照,被沙埋匍匐茎处有大量不定根生成;同时,可溶性糖和淀粉含量增高和纤维素含量下降,尤其是生长最快的匍匐茎顶部(如轻度半埋),茎中可溶性糖较低、淀粉增加最多,纤维素最低。但是被重度半埋和全埋的匍匐茎生长较少,茎中纤维素含量较多、淀粉含量较少。研究表明,沙埋是一种胁迫,它损伤叶片、扰乱碳水化合物代谢平衡。但它又是胁迫信号使植物产生适应性反应,它使未遭沙埋的匍匐茎顶端通过加速碳水化合物转化、分解纤维素、提高淀粉和可溶性糖含量,为顶端生长提供能量和营养,以加速匍匐茎快速生长摆脱沙埋。同时沙埋部位枝叶通过分解其纤维素,产生更多的可溶性糖和淀粉为匍匐茎不定根生长提供能量。因此,沙埋后匍匐茎内碳水化合物的转化是其快速生长和摆脱沙埋的能量来源而在其适应沙埋生长中起重要作用。单叶蔓荆对沙埋的适应性反应表现了其具有表型可塑性特性,该特性是其沙埋后维护匍匐茎顶部快速生长、不定根形成、碳水化合物转化以及具有较高抗沙埋能力的关键。  相似文献   

10.
The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps unsurprisingly, the greatest ability to emerge from burial in all other species was from shallow (2 cm) burial. Although survival was consistently highly dependent on duration and depth of burial as expected, emergence behaviour was not as easily predictable thereby confounding predictions. We conclude that responses to burial are highly species specific and therefore tolerance generalisations are likely to be oversimplifications. These data may be used to inform environmental impact models that allow forecasting of the cumulative impacts of seabed disturbance and may provide mitigation measures for the sustainable use of the seabed.  相似文献   

11.
Once non-indigenous species are introduced to a new area, secondary spread is important in determining their ecological and economic impacts. Recreational activities may facilitate the secondary spread of invasive species by creating and transporting viable propagules, however to date there are few manipulative experiments that demonstrate the mechanistic basis of their impact. We examined the effect of two of the main aquatic recreational activities, boating and swimming, on the abundance of propagules (fragments) of the invasive green alga, Caulerpataxifolia in southeastern Australia. Surveys of two infested estuaries each with locations of different levels of recreational activity demonstrated that locations with high recreational activity had a significantly greater abundance and biomass of fragments than locations with low recreational activity. Manipulative experiments using beyond BACI type designs showed that both boating and swimming created fragments. A single pass of a motor-boat over C.taxifolia beds significantly increased the biomass of fragments, but only in shallow water. Similarly, swimming in C.taxifolia beds for 5 min significantly increased the biomass of fragments, but only when background levels of fragments were low. This study has provided the first manipulative experiments confirming that recreational activities such as boating and swimming can create propagules of aquatic invasive species. These findings provide scientific justification for targeting management efforts to minimize secondary spread of aquatic invasive species by restricting recreational activities in invaded areas.  相似文献   

12.
Seagrass habitats are being lost throughout the world and the invasive alga C. taxifolia has often been implicated in seagrass declines. Although C. taxifolia can impact a variety of species, evidence for its effects on seagrasses is largely correlative. This study combined observational studies and manipulative experiments done over many years to test hypotheses about effects of C. taxifolia on two Australian seagrasses, namely Posidonia australis and Zostera capricorni. Results indicated that C. taxifolia is not having adverse impacts on the coverage of these seagrasses in the sites studied. Rather, C. taxifolia appears to be an opportunist, persisting longer and its coverage being greater in previously non-vegetated sediments than amongst seagrasses. C. taxifolia co-existed with P. australis and did not cause reductions in the cover of the seagrass. Outcomes of experimental manipulations of C. taxifolia amongst Z. capriconi were less clear due to losses of Z. capriconi in all plots, regardless of the presence of C. taxifolia. It was possible that C. taxifolia may have enhanced the decline in canopy cover of Z. capricorni, but the presence of alga did not alter the final fate of Z. capricorni. There was also no evidence that long-term areal coverage of P. australis or Z. capriconi has been affected by the introduction of C. taxifolia in the embayments studied. A review of literature on effects of species of Caulerpa on seagrasses provided limited experimental evidence for negative impacts of this genus on seagrass abundance.  相似文献   

13.
Patches of dead seaweeds can deposit, bury, and age into the sediment. Decomposition and release of algal-derived nutrients can influence patterns of distribution of benthic organisms. Here, I investigated how small-scale burial of Ulva spp. affected spatial variation of macrofauna in intertidal sediment. I deliberately buried Ulva detritus under the surface of 50 × 50 cm2 patches of sediment in three intertidal flats of the Oosterschelde estuary (The Netherlands). Results showed that there was no accumulation of particulate organic carbon and nitrogen in the sediment at the scales examined. The biomass of microphytobenthos did not show any change and there was evidence that grazing was important all over the study area. Burial did not alter composition and diversity of macrofauna, but some animals (Corophium volutator, Eteone spp. and Scoloplos armiger) had less numbers in the plots where detritus was buried than in the controls. These findings showed that burial of macroalgal detritus does not represent a major source of variation at the scales examined. It is suggested that in these sediments, recycling of detritus is fast and it buffers the effects of excess organic matter in the system.  相似文献   

14.
Free-drifting fragments represent an abundant potential source of recruits to the invasive alga, Caulerpa taxifolia. Here we examine how this fragment pool interacts with real and artificial habitat structure in estuarine environments. Specifically, we tested two hypotheses; (i) the fragment pool was unrelated to the structural complexity of Caulerpa beds and, (ii) fragment accumulation and retention was unrelated to canopy height of seagrass meadows. We examined fragment accumulation and retention using artificial seagrass units (ASUs) mimicking seagrasses with long (20 cm) leaves (Posidonia/Zostera) and short (5 cm) leaves (Halophila spp.). Both hypotheses were rejected. Fragment biomass was a positive function of the blade height and cover of Caulerpa taxifolia. ASUs with structure had greater fragment accumulation than controls, but we did not detect differences between ASUs of different canopy heights. However, fragment accumulation within ASUs was strongly affected by site, with the site experiencing the strongest tidal flows accumulating the most fragments. Structurally complex ASUs also retained more fragments relative to the bare control, but the degree of complexity did not affect retention and we could not distinguish between ASUs of different canopy height and the procedural control (metal frame lacking ‘leaves’). Overall, we conclude that the entanglement of C. taxifolia fragments is facilitated by structurally complex habitat and likely contributes to the successful establishment of this invader.  相似文献   

15.
Abstract

This paper addresses three related questions: (1) What factors control the efficiency of carbon burial in sediments? (2) Are rates of anaerobic organic matter degradation intrinsically lower than aerobic rates? (3) How important are anaerobic processes in the global marine sediment carbon economy?

Carbon burial efficiency (the ratio of the carbon burial rate and the carbon flux to the sediment surface) was estimated from literature data for a range of environments and was shown to be a function of sedimentation rate. No difference independent of sedimentation rate was found between aerobic and anaerobic sediments.

A review of recent microcosm and laboratory studies shows that anaerobic rates are not intrinsically lower than aerobic rates; fresh organic matter degrades at similar rates under oxic and anoxic conditions. Aerobic decomposition rates near the sediment surface are typically greater than anaerobic rates at depth because the most labile carbon is consumed before it can be buried in the anoxic zone.

A model approach was taken in estimating the importance of anaerobic processes in the global marine sediment economy, instead of extrapolating measured rates as done previously. The result, 150 Tg C yr?1, is two to nine times lower than previous estimates. This rate is about 9% of the global aerobic carbon oxidation rate and is about equal to the rate of long‐term carbon burial. The importance of anaerobic processes in marine sediments lies in their role in determining the amount of carbon preserved, not in the amount of carbon remineralized overall.  相似文献   

16.
On Ordos plateau, a semi-arid, desertified area in China, sand burial is a common stress factor for plants. The extent to which sand burial occurs is heterogeneous and unpredictable in space and in time. Therefore, clonal fragments (i.e., interconnected ramets of a clonal plant) often experience partial sand burial, with some ramets buried in sand while the rest may remain unburied. It was hypothesized that clonal fragments are able to benefit from clonal integration, in case they experience partial sand burial. A pot experiment was conducted with Potentilla anserina, a stoloniferous herb often found on Ordos plateau. We used clonal fragments consisting of four interconnected ramets. In the experiment, the two proximal (older) ramets were unburied while the two distal (younger) ramets were either unburied (control) or buried with a 2, 4 or 6 cm deep layer of sand (burial treatments). The stolon connection between the proximal and the distal ramets was either severed or left intact. Stolon severing dramatically decreased the survival of buried ramets. Stolon severing and sand burial had significant effects on plant performance in terms of biomass production, number of leaves and leaf area. A cost–benefit analysis based on performance measures shows that the proximal ramets supported their connected distal ramets and did not incur any cost from this resource export. These results suggest that clonal integration, which is one of the functionally most important consequences of clonal growth, contributes significantly to our test species' capacity to withstand partial sand burial on Ordos plateau, a semi-arid and desertified area of China.  相似文献   

17.
Most aquatic vegetation restorations involve the transplantation of submerged macrophytes. Sediment type and the clonal size are of great significance as they determine the fate of submerged macrophytes. In order to ensure successful restoration, a simulation experiment was conducted using aquarium mesocosms to investigate the response of stolon propagation capacity, the morphological features and productivity of Vallisneria natans for four types of sediment (lake mud [L], lake mud + sand [L + S, 50:50, v/v mixture], sand [S], clay [C]), and three types of clonal sizes. Results showed that sediment types significantly affected V. natans biomass accumulation, stolon propagation ability, ramet morphological characteristics, and productivity, where the asexual reproduction ability and productivity ranked as L > L + S > S > C in four sediment types. Total biomass, maximum net production, number of ramets, root diameter, number of stolons, and stolon propagation rate were all highest in L. In L and L + S, the plant chlorophyll content was higher than in S and C. The root diameter and the ratio of aboveground/underground biomass in S were the smallest among the four sediments. Moreover, when more V. natans seedlings were linked, more ramets and biomass were produced. The stolon propagation rate was ranked as the stolon with single seedling greater than the stolon with two‐linked seedlings greater than the stolon with three‐linked seedlings in L and L + S. The concentration of total nitrogen, total phosphorus, and NO3?‐N in water was remarkably reduced in four aquariums. Findings provide a scientific basis for restoring submerged macrophytes in different sediment settings.  相似文献   

18.
Population modeling based on species’ demography makes it possible to predict the pace of an invasion and evaluate the likelihood of success of different control strategies. We modeled the initial (density-independent) rate of increase of Caulerpa taxifolia (Vahl) C. Agardh (aquarium strain), a green alga that has markedly altered marine communities where it has invaded in the Mediterranean Sea. Parameter values for patch growth (from stolon extension) and reproduction (by asexual fragmentation and reattachment) were gleaned from published studies. Only the most conservative model, invoking field growth rates and low levels of fragment reattachment (2.5 m−2 of existing patch each summer), closely matched observed increases (4–14 × annually). The most effective times for control (greatest reduction in rate of increase) were removal of established patches before summer and removal of fragments after summer. These times correspond to just before maximum growth and just after maximum reproduction, respectively. Only a combined strategy, incorporating 99% removal of all fragments and annual removal of 99% of established patches, was predicted to eliminate C. taxifolia entirely (λ < 1). This level of effort is only likely to be possible during the first few years of an invasion, arguing strongly for careful monitoring and rapid response to potential high-impact invaders.  相似文献   

19.
Significant concentrations of oxalate (dissolved plus particulate) were present in sediments taken from a diversity of aquatic environments, ranging from 0.1 to 0.7 mmol/liter of sediment. These included pelagic and littoral sediments from two freshwater lakes (Searsville Lake, Calif., and Lake Tahoe, Calif.), a hypersaline, meromictic, alkaline lake (Big Soda Lake, Nev.), and a South San Francisco Bay mud flat and salt marsh. The oxalate concentration of several plant species which are potential detrital inputs to these aquatic sediments ranged from 0.1 to 5.0% (wt/wt). In experiments with litter bags, the oxalate content of Myriophyllum sp. samples buried in freshwater littoral sediments decreased to 7% of the original value in 175 days. This suggests that plant detritus is a potential source of the oxalate within these sediments. [14C]oxalic acid was anaerobically degraded to 14CO2 in all sediment types tested, with higher rates evident in littoral sediments than in the pelagic sediments of the lakes studied. The turnover time of the added [14C]oxalate was less than 1 day in Searsville Lake littoral sediments. The total sediment oxalate concentration did not vary significantly between littoral and pelagic sediments and therefore did not appear to be controlling the rate of oxalate degradation. However, depth profiles of [14C]oxalate mineralization and dissolved oxalate concentration were closely correlated in freshwater littoral sediments; both were greatest in the surface sediments (0 to 5 cm) and decreased with depth. The dissolved oxalate concentration (9.1 μmol/liter of sediment) was only 3% of the total extractable oxalate (277 μmol/liter of sediment) at the sediment surface. These results suggest that anaerobic oxalate degradation is a widespread phenomenon in aquatic sediments and may be limited by the dissolved oxalate concentration within these sediments.  相似文献   

20.
Caulerpa taxifolia, an invasive species elsewhere in the world, is native to Moreton Bay where its distribution has been increasing in recent years. In Australia, dense beds of C. taxifolia are predominantly found in areas of low light and high nutrients (low water quality). Monitoring data from Moreton Bay suggests that native C. taxifolia is not directly replacing seagrass, but that there is a successional trend of seagrass loss and subsequent C. taxifolia colonization. The current study examined responses of C. taxifolia in relation to changes in environmental conditions using ambient water quality and a light/nutrient manipulative experiment. In the ambient water quality experiment we found that C. taxifolia grew significantly faster in areas with higher light (lower turbidity). The manipulative experiment demonstrated that nutrients stimulate C. taxifolia growth, however, light availability and seasonality appear to influence the response of C. taxifolia growth to nutrients in Moreton Bay. These findings suggest that C. taxifolia is unlikely to colonize seagrass beds in areas with high light and low nutrients; however, in areas with moderate light and moderate to high nutrients C. taxifolia and seagrass are likely to coexist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号