首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Cai T  Aulds J  Gill T  Cerio M  Schmitt ME 《Genetics》2002,161(3):1029-1042
We have identified a cell cycle delay in Saccharomyces cerevisiae RNase MRP mutants. Mutants delay with large budded cells, dumbbell-shaped nuclei, and extended spindles characteristic of "exit from mitosis" mutants. In accord with this, a RNase MRP mutation can be suppressed by overexpressing the polo-like kinase CDC5 or by deleting the B-type cyclin CLB1, without restoring the MRP-dependent rRNA-processing step. In addition, we identified a series of genetic interactions between RNase MRP mutations and mutations in CDC5, CDC14, CDC15, CLB2, and CLB5. As in most "exit from mitosis" mutants, levels of the Clb2 cyclin were increased. The buildup of Clb2 protein is not the result of a defect in the release of the Cdc14 phosphatase from the nucleolus, but rather the result of an increase in CLB2 mRNA levels. These results indicate a clear role of RNase MRP in cell cycle progression at the end of mitosis. Conservation of this function in humans may explain many of the pleiotropic phenotypes of cartilage hair hypoplasia.  相似文献   

2.
Bolkan BJ  Booker R  Goldberg ML  Barbash DA 《Genetics》2007,177(4):2233-2241
Matings between D. melanogaster females and males of sibling species in the D. melanogaster complex yield hybrid males that die prior to pupal differentiation. We have reexamined a previous report suggesting that the developmental defects in these lethal hybrid males reflect a failure in cell proliferation that may be the consequence of problems in mitotic chromosome condensation. We also observed a failure in cell proliferation, but find in contrast that the frequencies of mitotic figures and of nuclei staining for the mitotic marker phosphohistone H3 in the brains of hybrid male larvae are extremely low. We also found that very few of these brain cells in male hybrids are in S phase, as determined by BrdU incorporation. These data suggest that cells in hybrid males are arrested in either the G(1) or G(2) phases of the cell cycle. The cells in hybrid male brains appear to be particularly sensitive to environmental stress; our results indicate that certain in vitro incubation conditions induce widespread cellular necrosis in these brains, causing an abnormal nuclear morphology noted by previous investigators. We also document that hybrid larvae develop very slowly, particularly during the second larval instar. Finally, we found that the frequency of mitotic figures in hybrid male larvae mutant for Hybrid male rescue (Hmr) is increased relative to lethal hybrid males, although not to wild-type levels, and that chromosome morphology in Hmr(-) hybrid males is also not completely normal.  相似文献   

3.
4.
C F Lehner  P H O'Farrell 《Cell》1989,56(6):957-968
Cyclin proteins are thought to trigger entry into mitosis. During mitosis they are rapidly degraded. Therefore, mitosis and consequently cyclin degradation might be triggered at a time when cyclins have reaccumulated to a critical level. We cloned and sequenced a Drosophila cyclin A homolog and identified mutations in the corresponding gene. Immunofluorescent staining revealed that cyclin A accumulates in the interphase cytoplasm of cellularized embryos, but relocates to the nuclear region early in prophase and is completely degraded within metaphase. Cyclin A was expressed in dividing cells throughout development, and a functional cyclin A gene was required for continued division after exhaustion of maternally contributed cyclin A. Importantly, the timing of post cellularization divisions was not governed by the rate of accumulation or level of cyclin A.  相似文献   

5.
Relatively little is known regarding how energetic demand during cell proliferation is sensed or coordinated with mitochondrial metabolism. Here we demonstrate that cell cycle progression through G1 is associated with a significant increase in mitochondrial membrane potential (?Ψm) and respiration. We used this change in metabolic rate to isolate cells in G1 with low and high levels of mitochondrial membrane potential (?ΨmL and ?ΨmH). Biochemical and functional studies demonstrate that ?ΨmL and ?ΨmH cells display the distinct characteristics of early and late G1 phase, respectively. We further demonstrate that the metabolic rate in G1 reflect levels of the mTOR-raptor complex as well as susceptibility to rapamycin-induced cell cycle delay. In conclusion, our data suggests a coupling of mitochondrial bioenergetics and G1 progression and points to the mTOR signaling pathway as a potential molecular coordinator of these two processes.  相似文献   

6.
Centrin is a calcium-binding cytoskeletal protein involved in the duplication of centrosomes in higher eukaryotes. To explore the role of centrin in the protozoan parasite Leishmania, we created Leishmania deficient in the centrin gene (LdCEN). Remarkably, centrin null mutants (LdCEN(-/-)) showed selective growth arrest as axenic amastigotes but not as promastigotes. Flow cytometry analysis confirmed that the mutant axenic amastigotes have a cell cycle arrest at the G(2)/M stage. The axenic amastigotes also showed failure of basal body duplication and failure of cytokinesis resulting in multinucleated "large" cells. Increased terminal deoxy uridine triphosphate nick end labeling positivity was observed in centrin mutant axenic amastigotes compared with wild type cells, suggesting the activation of a programmed cell death pathway. Growth of LdCEN(-/-) amastigotes in infected macrophages in vitro was inhibited and also resulted in large multinucleated parasites. Normal basal body duplication and cell division in the LdCEN knockout promastigote is unique and surprising. Further, this is the first report where disruption of a centrin gene displays stage-specific/cell type-specific failure in cell division in a eukaryote. The centrin null mutant defective in amastigote growth could be useful as a vaccine candidate against leishmaniasis.  相似文献   

7.
8.
9.

Background  

Proper coordination of the functions at the DNA replication fork is vital to the normal functioning of a cell. Specifically the precise coordination of helicase and polymerase activity is crucial for efficient passage though S phase. The Ctf4 protein has been shown to be a central member of the replication fork and links the replicative MCM helicase and DNA polymerase α primase. In addition, it has been implicated as a member of a complex that promotes replication fork stability, the Fork Protection Complex (FPC), and as being important for sister chromatid cohesion. As such, understanding the role of Ctf4 within the context of a multicellular organism will be integral to our understanding of its potential role in developmental and disease processes.  相似文献   

10.
Centrosomes provide docking sites for regulatory molecules involved in the control of the cell division cycle. The centrosomal matrix contains several proteins, which anchor kinases and phosphatases. The large A-Kinase Anchoring Protein AKAP450 is acting as a scaffolding protein for other components of the cell signaling machinery. We selectively perturbed the centrosome by modifying the cellular localization of AKAP450. We report that the expression in HeLa cells of the C terminus of AKAP450, which contains the centrosome-targeting domain of AKAP450 but not its coiled-coil domains or binding sites for signaling molecules, leads to the displacement of the endogenous centrosomal AKAP450 without removing centriolar or pericentrosomal components such as centrin, gamma-tubulin, or pericentrin. The centrosomal protein kinase A type II alpha was delocalized. We further show that this expression impairs cytokinesis and increases ploidy in HeLa cells, whereas it arrests diploid RPE1 fibroblasts in G1, thus further establishing a role of the centrosome in the regulation of the cell division cycle. Moreover, centriole duplication is interrupted. Our data show that the association between centrioles and the centrosomal matrix protein AKAP450 is critical for the integrity of the centrosome and for its reproduction.  相似文献   

11.
We and others recently demonstrated that Drosophila melanogaster embryos arrest development and embryonic cells cease dividing when they are deprived of O2. To further characterize the behavior of these embryos in response to O2 deprivation and to define the O2-sensitive checkpoints in the cell cycle, embryos undergoing nuclear cycles 3-13 were subjected to O2 deprivation and examined by confocal microscopy under control, hypoxic, and reoxygenation conditions. In vivo, real-time analysis of embryos carrying green fluorescent protein-kinesin demonstrated that cells arrest at two major points of the cell cycle, either at the interphase (before DNA duplication) or at metaphase, depending on the cell cycle phase at which O2 deprivation was induced. Immunoblot analysis of embryos whose cell divisions are synchronized by inducible String (cdc25 homolog) demonstrated that cyclin B was degraded during low O2 conditions in interphase-arrested embryos but not in those arrested in metaphase. Embryos resumed cell cycle activity within ~20 min of reoxygenation, with very little apparent change in cell cycle kinetics. We conclude that there are specific points during the embryonic cell cycle that are sensitive to the O2 level in D. melanogaster. Given the fact that O2 deprivation also influences the growth and development of other species, we suggest that similar hypoxia-sensitive cell cycle checkpoints may also exist in mammalian cells.  相似文献   

12.
13.
The enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is responsible for the control of intracellular levels of dUTP thus controlling the incorporation of uracil into DNA during replication. Trypanosomes and certain eubacteria contain a dimeric dUTP-dUDPase belonging to the recently described superfamily of all-alpha NTP pyrophosphatases which bears no resemblance with typical eukaryotic trimeric dUTPases and presents unique properties regarding substrate specificity and product inhibition. While the biological trimeric enzymes have been studied in detail and the human enzyme has been proposed as a promising novel target for anticancer chemotherapeutic strategies, little is known regarding the biological function of dimeric proteins. Here, we show that in Trypanosoma brucei, the dimeric dUTPase is a nuclear enzyme and that down-regulation of activity by RNAi greatly reduces cell proliferation and increases the intracellular levels of dUTP. Defects in growth could be partially reverted by the addition of exogenous thymidine. dUTPase-depleted cells presented hypersensitivity to methotrexate, a drug that increases the intracellular pools of dUTP, and enhanced uracil-DNA glycosylase activity, the first step in base excision repair. The knockdown of activity produces numerous DNA strand breaks and defects in both S and G2/M progression. Multiple parasites with a single enlarged nucleus were visualized together with an enhanced population of anucleated cells. We conclude that dimeric dUTPases are strongly involved in the control of dUTP incorporation and that adequate levels of enzyme are indispensable for efficient cell cycle progression and DNA replication.  相似文献   

14.
Mn superoxide dismutase (MnSOD) is an important mitochondrial antioxidant enzyme, and elevated MnSOD levels have been shown to reduce tumor growth in part by suppressing cell proliferation. Studies with fibroblasts have shown that increased MnSOD expression prolongs cell cycle transition time in G1/S and favors entrance into the quiescent state. To determine if the same effect occurs during tissue regeneration in vivo, we used a transgenic mouse system with liver-specific MnSOD expression and a partial hepatectomy paradigm to induce synchronized in vivo cell proliferation during liver regeneration. We show in this experimental system that a 2.6-fold increase in MnSOD activity leads to delayed entry into S phase, as measured by reduction in bromodeoxyuridine (BrdU) incorporation and decreased expression of proliferative cell nuclear antigen (PCNA). Thus, compared to control mice with baseline MnSOD levels, transgenic mice with increased MnSOD expression in the liver have 23% fewer BrdU-positive cells and a marked attenuation of PCNA expression. The increase in MnSOD activity also leads to an increase in the mitochondrial form of thioredoxin (thioredoxin 2), but not in several other peroxidases examined, suggesting the importance of thioredoxin 2 in maintaining redox balance in mitochondria with elevated levels of MnSOD.  相似文献   

15.
16.
Receptor tyrosine kinases such as the EGF receptor transduce extracellular signals into multiple cellular responses. In the developing Drosophila eye, EGFR activity triggers cell differentiation. Here we focus on three additional cell autonomous aspects of EGFR function and their coordination with differentiation, namely, withdrawal from the cell cycle, mitosis, and cell survival. We find that, whereas differentiation requires intense signaling, dependent on multiple reinforcing ligands, lesser EGFR activity maintains cell cycle arrest, promotes mitosis, and protects against cell death. Each response requires the same Ras, Raf, MAPK, and Pnt signal transduction pathway. Mitotic and survival responses also involve Pnt-independent branches, perhaps explaining how survival and mitosis can occur independently. Our results suggest that, rather than triggering all or none responses, EGFR coordinates partially independent processes as the eye differentiates.  相似文献   

17.
Interleukin 3 and cell cycle progression   总被引:8,自引:0,他引:8  
Interleukin 3 (IL-3) is a regulatory glycoprotein required for the proliferation and differentiation of cells from many if not all hemopoietic lineages. With the emergence of the competence-progression model of cell proliferation, which predicts that growth factors function at specific stages of the cell cycle, we examined the possibility that IL-3 functions at a specific stage of the cell cycle. C-63 cells were developed as a cell line from normal murine bone marrow. They have a mast cell phenotype and require pokeweed-stimulated spleen cell-conditioned medium (CM), a rich source of IL-3, for their continued growth. Exponentially growing cells were transferred from growth medium, which contains CM, to medium lacking CM or IL-3. After 24 hours, cell viability had decreased 40-50%. The remaining viable cells did not incorporate 3H-thymidine, and displayed a single peak at G1 in a DNA histogram. Restimulation of these cells with CM or IL-3 resulted in a dramatic rise in 3H-thymidine uptake 20-24 hours after restimulation. DNA histograms of restimulated cultures indicated that the cells were progressing in a wave-like fashion throughout the remainder of the cell cycle. The length of time necessary for cells to be in contact with CM or IL-3 before they could progress into the remainder of the cell cycle was also examined. Cells incubated with CM or IL-3 for less than 16 hours could not progress into S phase, whereas cells incubated for 16 hours or longer could progress into S phase and through the remainder of the cell cycle. These data suggest that IL-3 exerts its function at a specific stage of the cell cycle.  相似文献   

18.
19.
Complexes of D-type cyclins and cdk4 or 6 are thought to govern progression through the G(1) phase of the cell cycle. In DROSOPHILA:, single genes for Cyclin D and Cdk4 have been identified, simplifying genetic analysis. Here, we show that DROSOPHILA: Cdk4 interacts with Cyclin D and the Rb homolog RBF as expected, but is not absolutely essential. Flies homozygous for null mutations develop to the adult stage and are fertile, although only to a very limited degree. Overexpression of inactive mutant Cdk4, which is able to bind Cyclin D, does not enhance the Cdk4 mutant phenotype, confirming the absence of additional Cyclin D-dependent cdks. Our results indicate, therefore, that progression into and through the cell cycle can occur in the absence of Cdk4. However, the growth of cells and of the organism is reduced in Cdk4 mutants, indicating a role of D-type cyclin-dependent protein kinases in the modulation of growth rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号