首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3′-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3′ initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.  相似文献   

2.
Nodaviruses are a family of positive-stranded RNA viruses with a bipartite genome of RNAs. In nodaviruses, genomic RNA1 encodes protein A, which is recognized as an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for its RNA replication. Although nodaviral RNA replication has been studied in considerable detail, and nodaviruses are well recognized models for investigating viral RNA replication, the mechanism(s) governing the initiation of nodaviral RNA synthesis have not been determined. In this study, we characterized the RdRP activity of Wuhan nodavirus (WhNV) protein A in detail and determined that this nodaviral protein A initiates RNA synthesis via a de novo mechanism, and this RNA synthesis initiation could be independent of other viral or cellular factors. Moreover, we uncovered that WhNV protein A contains a terminal nucleotidyltransferase (TNTase) activity, which is the first time such an activity has been identified in nodaviruses. We subsequently found that the TNTase activity could function in vitro to repair the 3′ initiation site, which may be digested by cellular exonucleases, to ensure the efficiency and accuracy of viral RNA synthesis initiation. Furthermore, we determined the cis-acting elements for RdRP or TNTase activity at the 3′-end of positive or negative strand RNA1. Taken together, our data establish the de novo synthesis initiation mechanism and the TNTase activity of WhNV protein A, and this work represents an important advance toward understanding the mechanism(s) of nodaviral RNA replication.  相似文献   

3.
Norwalk virus is a major cause of acute gastroenteritis for which effective treatments are sorely lacking. To provide a basis for the rational design of novel antiviral agents, the main replication enzyme in Norwalk virus, the virally encoded RNA-dependent RNA polymerase (RdRP), has been expressed in an enzymatically active form, and its structure has been crystallographically determined both in the presence and absence of divalent metal cations. Although the overall fold of the enzyme is similar to that seen previously in the RdRP from rabbit hemorrhagic disease virus, the carboxyl terminus, surprisingly, is located in the active site cleft in five independent copies of the protein in three distinct crystal forms. The location of this carboxyl-terminal segment appears to interfere with the binding of double-stranded RNA in the active site cleft and may play a role in the initiation of RNA synthesis or mediate interactions with accessory replication proteins.  相似文献   

4.
Template-dependent polynucleotide synthesis is catalyzed by enzymes whose core component includes a ubiquitous alphabeta palm subdomain comprising A, B and C sequence motifs crucial for catalysis. Due to its unique, universal conservation in all RNA viruses, the palm subdomain of RNA-dependent RNA polymerases (RdRps) is widely used for evolutionary and taxonomic inferences. We report here the results of elaborated computer-assisted analysis of newly sequenced replicases from Thosea asigna virus (TaV) and the closely related Euprosterna elaeasa virus (EeV), insect-specific ssRNA+ viruses, which revise a capsid-based classification of these viruses with tetraviruses, an Alphavirus-like family. The replicases of TaV and EeV do not have characteristic methyltransferase and helicase domains, and include a putative RdRp with a unique C-A-B motif arrangement in the palm subdomain that is also found in two dsRNA birnaviruses. This circular motif rearrangement is a result of migration of approximately 22 amino acid (aa) residues encompassing motif C between two internal positions, separated by approximately 110 aa, in a conserved region of approximately 550 aa. Protein modeling shows that the canonical palm subdomain architecture of poliovirus (ssRNA+) RdRp could accommodate the identified sequence permutation through changes in backbone connectivity of the major structural elements in three loop regions underlying the active site. This permutation transforms the ferredoxin-like beta1alphaAbeta2beta3alphaBbeta4 fold of the palm subdomain into the beta2beta3beta1alphaAalphaBbeta4 structure and brings beta-strands carrying two principal catalytic Asp residues into sequential proximity such that unique structural properties and, ultimately, unique functionality of the permuted RdRps may result. The permuted enzymes show unprecedented interclass sequence conservation between RdRps of true ssRNA+ and dsRNA viruses and form a minor, deeply separated cluster in the RdRp tree, implying that other, as yet unidentified, viruses may employ this type of RdRp. The structural diversification of the palm subdomain might be a major event in the evolution of template-dependent polynucleotide polymerases in the RNA-protein world.  相似文献   

5.
6.
Morbilliviruses, such as measles virus (MeV) and canine distemper virus (CDV), are highly infectious members of the paramyxovirus family. MeV is responsible for major morbidity and mortality in non-vaccinated populations. ERDRP-0519, a pan-morbillivirus small molecule inhibitor for the treatment of measles, targets the morbillivirus RNA-dependent RNA-polymerase (RdRP) complex and displayed unparalleled oral efficacy against lethal infection of ferrets with CDV, an established surrogate model for human measles. Resistance profiling identified the L subunit of the RdRP, which harbors all enzymatic activity of the polymerase complex, as the molecular target of inhibition. Here, we examined binding characteristics, physical docking site, and the molecular mechanism of action of ERDRP-0519 through label-free biolayer interferometry, photoaffinity cross-linking, and in vitro RdRP assays using purified MeV RdRP complexes and synthetic templates. Results demonstrate that unlike all other mononegavirus small molecule inhibitors identified to date, ERDRP-0519 inhibits all phosphodiester bond formation in both de novo initiation of RNA synthesis at the promoter and RNA elongation by a committed polymerase complex. Photocrosslinking and resistance profiling-informed ligand docking revealed that this unprecedented mechanism of action of ERDRP-0519 is due to simultaneous engagement of the L protein polyribonucleotidyl transferase (PRNTase)-like domain and the flexible intrusion loop by the compound, pharmacologically locking the polymerase in pre-initiation conformation. This study informs selection of ERDRP-0519 as clinical candidate for measles therapy and identifies a previously unrecognized druggable site in mononegavirus L polymerase proteins that can silence all synthesis of viral RNA.  相似文献   

7.
Genome replication in picornaviruses is catalyzed by a virally encoded RNA-dependent RNA polymerase, termed 3D. The enzyme performs this operation, together with other viral and probably host proteins, in the cytoplasm of their host cells. The crystal structure of the 3D polymerase of foot-and-mouth disease virus, one of the most important animal pathogens, has been determined unliganded and bound to a template-primer RNA decanucleotide. The enzyme folds in the characteristic fingers, palm and thumb subdomains, with the presence of an NH2-terminal segment that encircles the active site. In the complex, several conserved amino acid side chains bind to the template-primer, likely mediating the initiation of RNA synthesis. The structure provides essential information for studies on RNA replication and the design of antiviral compounds.  相似文献   

8.
9.
Cassava brown streak disease (CBSD), dubbed the “Ebola of plants”, is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups.  相似文献   

10.
11.
The inhibition of nucleic acid-binding proteins by aurintricarboxylic acid   总被引:15,自引:0,他引:15  
Qβ replicase, Escherichia coli RNA polymerase, and T7 RNA polymerase are inhibited by low concentrations of the dye aurintricarboxylic acid (ATA). In each case initiation by the enzyme was preferentially inhibited. The elongation of initiated polynucleotide chains by Qβ replicase was insensitive to ATA in the range of concentrations required to inhibit initiation. Treatment of Qβ replicase, RNA polymerase and lac repressor with ATA prevented enzymemediated binding of the templates to nitrocellulose filters. We propose that the inhibitor combines with the template binding site of these proteins to prevent initiation.  相似文献   

12.
Single-stranded RNA (ssRNA) is the simplest form of genetic molecule and constitutes the genome in some viruses and presumably in primitive life-forms. However, an innate and unsolved problem regarding the ssRNA genome is formation of inactive double-stranded RNA (dsRNA) during replication. Here, we addressed this problem by focusing on the secondary structure. We systematically designed RNAs with various structures and observed dsRNA formation during replication using an RNA replicase (Qβ replicase). From the results, we extracted a simple rule regarding ssRNA genome replication with less dsRNA formation (less GC number in loops) and then designed an artificial RNA that encodes a domain of the β-galactosidase gene based on this rule. We also obtained evidence that this rule governs the natural genomes of all bacterial and most fungal viruses presently known. This study revealed one of the structural design principles of an ssRNA genome that replicates continuously with less dsRNA formation.  相似文献   

13.
Chikungunya virus (CHIKV; genus Alphavirus, family Togaviridae) has recently caused several major outbreaks affecting millions of people. There are no licensed vaccines or antivirals, and the knowledge of the molecular biology of CHIKV, crucial for development of efficient antiviral strategies, remains fragmentary. CHIKV has a 12 kb positive-strand RNA genome, which is translated to yield a nonstructural (ns) or replicase polyprotein. CHIKV structural proteins are expressed from a subgenomic RNA synthesized in infected cells. Here we have developed CHIKV trans-replication systems, where replicase expression and RNA replication are uncoupled. Bacteriophage T7 RNA polymerase or cellular RNA polymerase II were used for production of mRNAs for CHIKV ns polyprotein and template RNAs, which are recognized by CHIKV replicase and encode for reporter proteins. CHIKV replicase efficiently amplified such RNA templates and synthesized large amounts of subgenomic RNA in several cell lines. This system was used to create tagged versions of ns proteins including nsP1 fused with enhanced green fluorescent protein and nsP4 with an immunological tag. Analysis of these constructs and a matching set of replicon vectors revealed that the replicases containing tagged ns proteins were functional and maintained their subcellular localizations. When cells were co-transfected with constructs expressing template RNA and wild type or tagged versions of CHIKV replicases, formation of characteristic replicase complexes (spherules) was observed. Analysis of mutations associated with noncytotoxic phenotype in CHIKV replicons showed that a low level of RNA replication is not a pre-requisite for reduced cytotoxicity. The CHIKV trans-replicase does not suffer from genetic instability and represents an efficient, sensitive and reliable tool for studies of different aspects of CHIKV RNA replication process.  相似文献   

14.
Xu Z  Chao Y  Si Y  Wang J  Jin M  Guo A  Qian P  Zhou R  Chen H 《In silico biology》2008,8(1):21-32
The NS5B protein of classical swine fever virus (CSFV) is an important enzyme bearing a unique RNA-dependent RNA polymerase (RdRp) activity. The RdRp plays a crucial role in the viral replication cycle and in forming a replicase complex. However, the initiating synthesis mechanism of the CSFV RNA polymerase is unclearly described at present. Our aim is to reveal the RdRp-GTP docking sites and the effective modules of GTP initially bound to the polymerase in starting initiation of replication according to a well predicted CSFV RdRp model. Based on some known crystal structures of RNA polymerase, computational methods were used to establish the model of a CSFV RdRp. An analogous mechanism of CSFV RNA polymerase in de novo initiation was subsequently represented through docking a GTP into the structure model. The unique GTP binding pocket of the polymerase was pointed out: five residues E227, S408, R427, K435, and R439 involved in steady hydrogen bonds and two residues C407 and L232 involved in hydrophobic contact with the GTP. From a genetic evolutionary point of view, three residues C407, S408 and R427 have been suggested to be of particular importance by analysis of residue conservation. It is suggested that these crucial residues should have very significant function in the de novo initiation of the rigorous CSFV polymerase model, which can lead us to design experiments for studying the mechanism of viral replication and develop valid anti-viral drugs.  相似文献   

15.
Replication of positive strand flaviviruses is mediated by the viral RNA-dependent RNA polymerases (RdRP). To study replication of dengue virus (DEN), a flavivirus family member, an in vitro RdRP assay was established using cytoplasmic extracts of DEN-infected mosquito cells and viral subgenomic RNA templates containing 5'- and 3'-terminal regions (TRs). Evidence supported that an interaction between the TRs containing conserved stem-loop, cyclization motifs, and pseudoknot structural elements is required for RNA synthesis. Two RNA products, a template size and a hairpin, twice that of the template, were formed. To isolate the function of the viral RdRP (NS5) from that of other host or viral factors present in the cytoplasmic extracts, the NS5 protein was expressed and purified from Escherichia coli. In this study, we show that the purified NS5 alone is sufficient for the synthesis of the two products and that the template-length RNA is the product of de novo initiation. Furthermore, the incubation temperature during initiation, but not elongation phase of RNA synthesis modulates the relative amounts of the hairpin and de novo RNA products. A model is proposed that a specific conformation of the viral polymerase and/or structure at the 3' end of the template RNA is required for de novo initiation.  相似文献   

16.
D A Steinhauer  E Domingo  J J Holland 《Gene》1992,122(2):281-288
The in vitro fidelity of the virion-associated RNA polymerase of vesicular stomatitis virus was quantitated for a single conserved viral RNA site and the usual high in vitro base misincorporation error frequencies (approx. 10(-3)) were observed at this (guanine) site. We sought evidence for RNA 3'-->5' exonuclease proofreading mechanisms by varying the concentrations of the next nucleoside triphosphate, by incorporation of nucleoside[1-thio]triphosphate analogues of the four natural RNA nucleosides, and by varying the concentrations of pyrophosphate in the in vitro polymerase reaction. None of these perturbations greatly affected viral RNA polymerase fidelity at the site studied. These results fail to show evidence for proofreading exonuclease activity associated with the virion replicase of an RNA virus. They suggest that RNA virus replication might generally be error-prone, because RNA replicase base misincorporations are proofread very inefficiently or not at all.  相似文献   

17.
18.
Replication of the segmented double-stranded (ds) RNA genome of viruses belonging to the Reoviridae family requires the RNA-dependent RNA polymerase (RdRP) to use 10-12 different mRNAs as templates for (-) strand synthesis. Rotavirus serves as a model system for study of this process, since its RdRP (VP1) is catalytically active and can specifically recognize template mRNAs in vitro. Here, we have analyzed the requirements for template recognition by the rotavirus RdRP and compared those to the requirements for formation of (-) strand initiation complexes. The results show that multiple functionally independent recognition signals are present at the 3'-end of viral mRNAs, some positioned in nonconserved regions upstream of the highly conserved 3'-terminal consensus sequence. We also found that RdRP recognition signals are distinct from cis-acting signals that promote (-) strand synthesis, because deletions of portions of the 3'-consensus sequence that caused viral mRNAs to be poorly replicated in vitro did not necessarily prevent efficient recognition of the RNA by the RdRP. Although the RdRP alone can specifically bind to viral mRNAs, our analysis reveals that this interaction is not sufficient to generate initiation complexes, even in the presence of nucleotides and divalent cations. Rather, the formation of initiation complexes also requires the core lattice protein (VP2), a virion component that forms a T = 1 icosahedral shell that encapsidates the segmented dsRNA genome. The essential role that the core lattice protein has in (-) strand initiation provides a mechanism for the coordination of genome replication and virion assembly.  相似文献   

19.
Rabbit hemorrhagic disease virus (RHDV) is a member of the Caliciviridae family and cannot be propagated in vitro, which has impeded the progress of investigating its replication mechanism. Construction of an RHDV replicon system has recently provided a platform for exploring RHDV replication in host cells. Here, aided by this replicon system and using two-step affinity purification, we purified the RHDV replicase and identified its associated host factors. We identified rabbit nucleolin (NCL) as a physical link, which mediating the interaction between other RNA-dependent RNA polymerase (RdRp)-related host proteins and the viral replicase RdRp. We found that the overexpression or knockdown of NCL significantly increased or severely impaired RHDV replication in RK-13 cells, respectively. NCL was identified to directly interact with RHDV RdRp, p16, and p23. Furthermore, NCL knockdown severely impaired the binding of RdRp to RdRp-related host factors. Collectively, these results indicate that the host protein NCL is essential for RHDV replication and acts as a physical link between viral replicase and host proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号