首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract The distribution and abundance of diggings of the Tasmanian bettong Bettongia gaimardi and sporocarps of hypogean fungi (the major dietary item of bettongs) were studied in an area of dry sclerophyll forest in northern Tasmania. Digging activity was greatest during August. Sporocarp production was expected to be greatest at this time due to high soil moisture levels. The distribution of both hypogean sporocarps and the diggings of bettongs was highly clumped. Degree of clumping of diggings varied seasonally being greatest in summer and lowest in winter. Digging activity was greatest in sandy soils and least in dolerite soils. This was thought to result from the lower fertility sandy soils having greater densities of sporocarps. Lateritic soils, although the most infertile, had fewer diggings than sandy soils. This is probably due to the difficulty of digging in these gravelly, often cemented soils. The depth of diggings was greatest in winter when soil moisture was high. Mesophellia was the most frequently occurring sporocarp and spores of this genus were the most abundant in the faecal pellets of bettongs.  相似文献   

2.
Fresh sporocarps and root and soil samples were collected under a monospecific forest plantation of Acacia mangium in Dagana in Northern Senegal and checked for the presence of fluorescent pseudomonads. No bacteria were detected except from sporocarps collected with adhering soil and hyphal strands. Pisolithus sporocarps were dried at 30 degrees C for 2 weeks, ground, passed through a 2-mm sieve and mixed together. This dry sporocarp powder (DSP) was used to inoculate and form mycorrhizas on A. mangium seedlings in a glasshouse experiment. After 3 months culture, plant growth was increased in the DSP treatment but no ectomycorrhizas were present on the A. mangium root systems; however fluorescent pseudomonads were recorded in the cultural soil. The stimulatory effects on the plant growth were maintained for 6 months. However, fluorescent pseudomonads were no longer detected and 35% of the short roots were ectomycorrhizal. Some of the fluorescent pseudomonad isolates detected after 3 months stimulated the radial fungal growth in axenic conditions. These observations suggest that these bacteria are closely associated with the Pisolithus fructifications and could interact with the ectomycorrhizal symbiosis establishment.  相似文献   

3.
Conservation of rare plants can be accomplished by the restoration practice of reintroduction, but subsequent management is often required. In species with narrow habitat requirements, it is especially difficult to predict which management methods will be successful at new locations. Marsilea villosa is an endangered endemic Hawaiian fern with only seven remaining populations in ephemerally flooding drylands. Among its uncommon traits are long‐lived sporocarps, a requirement of flood and drought to complete its sexual life cycle, and the potential for extensive vegetative growth. An experiment was performed to determine which restoration techniques might best facilitate growth of outplanted M. villosa. The following effects were tested in a split‐plot factorial design: flooding (once/none), light (50% shade/full sun), weeding (bi‐monthly/none), and all interactions. We hypothesized that flooding would have the largest single‐factor effect and that there would be interactions among treatments. As hypothesized, flooding had the greatest positive effect on percent cover and sporocarp production. However, shade also increased cover over full sun when the plants began to experience drought. There was an interaction of light × flooding because M. villosa grew best in flooded, shaded plots. Weeding had no significant effect except in combination with flooding. Beyond protected status, current management of M. villosa only includes weed management at some populations. This study shows that if reintroducing new populations, the need for labor‐intensive weed management might be reduced if M. villosa is planted under conditions of flooding and moderate shade.  相似文献   

4.
Classification and ordination of plant formations in the Pantanal of Brazil   总被引:1,自引:0,他引:1  
Pinder  Laurenz  Rosso  Sergio 《Plant Ecology》1998,136(2):151-165
Classification and ordination of plant formations are presented for a seasonally flooded plain of the Brazilian Pantanal. Phytosociological data were collected on 10 physiognomically distinct formations during the rainy, flood, and dry seasons. The degree of association among plant species was measured with Jaccard similarity index, and both Jaccard similarity index and Bray Curtis distance index were employed to classify sample units into similar groups. The ordination of plant species and sample units were performed with Correspondence Analysis. Four groups of plant formations were significantly distinct on a quantitative basis: marsh ponds/waterlogged basins, short grasslands, tall grassland/scrub, and forest-edges. These formations were ordered along a gradient of topographic relief from depressions with permanent standing water (marshes) through flats subject to seasonal flooding (grasslands and scrub) and mounds of sandy soil above the flood level (forests). Although hydroperiod appears to be one of the most important variables, the distribution of plant species within wetlands is most probably explained by the interaction of many additional factors. A few plant species could be used as indicators of the local hydrological and edaphic conditions, e.g., Eleocharis elegans, Aeschynomene fluminensis, Hydrolea spinosa, and Hymenachne amplexicaulis for marsh ponds, and Caperonia castaneifolia, Diodia kuntzei, and Eleocharis acutangula for waterlogged basins. The procedure presented in this study could be developed as a tool for the inventory and management of the Pantanal and other palustrine wetland habitats.  相似文献   

5.
Tropical savanna ecosystems are extremely diverse and important for global carbon storage. In the state of Mato Grosso, tropical savanna (locally known as the Cerrado), turns from well-drained, upland areas into seasonally flooded areas within the Pantanal; however, the Cerrado and the Pantanal share many common tree species, such as Vochysia divergens, a flood-adapted tree native to the Amazon Basin, and Curatella americana, a tree, adapted native to the welldrained the Cerrado. We measured the photosynthetic light response of these species in the the Cerrado and the Pantanal over a 1-year period to determine how these species physiologically adjust to these hydrologically distinct habitats. We hypothesized that neither species would experience a significant decline in maximum, light-saturated photosynthetic rate (P max) in their naturalized habitat. Physiological performance of each species was generally higher in the habitat that they were adapted to; however, our data indicated that both species have broad tolerance for seasonal variations in hydrology, allowing them to tolerate seasonal drought during the dry season in the Cerrado, and seasonal flooding during the wet season in the Pantanal. In V. divergens, flexible water-use efficiency, higher specific leaf area (SLA), and a greater ability to adjust mass-based P max (P max,m) to variations in leaf N and P concentration appeared to be key traits for withstanding prolonged drought in the Cerrado. In C. americana, increases in SLA and higher nutrient-use efficiency appeared to be important in maintaining high rates of P max,m in the seasonally flooded Pantanal. Flexibility in physiology and resource-use efficiency may allow these species to survive and persist in habitats with broadly differing hydrology.  相似文献   

6.
《Aquatic Botany》2007,86(1):76-82
Interconnected ramets of the submersed macrophyte Vallisneria spiralis were subjected to two homogeneous treatments (shading or not shading whole plants) and two heterogeneous treatments (only shading basal or apical ramets of plants). The benefits and costs of clonal integration between connected ramets grown in heterogeneous treatments were examined. Results showed that shading apical ramets induced significant benefits to the performance of whole plant in terms of dry weight per plant (P < 0.01) and number of ramets per plant (P < 0.05). Especially for the unshaded basal ramets, their dry weight, number of ramets, number of branches and total stolon length were 89%, 30%, 29% and 58% higher than the corresponding ramets in homogeneous treatment, respectively. Compared to their controls in homogeneous treatments, unshaded basal ramets produced more leaf mass (0.15 g versus 0.11 g) whereas shaded apical ramets produced more root mass (0.012 g versus 0.008 g). However, there was a different pattern of integration when basal ramets were shaded. Shading basal ramets led to a significant decrease in stolon growth, but the individual performance of shaded ramets improved. Cost-benefit analyses revealed that dry weight per ramet of basal shaded ramets was 31% greater than that of basal shaded ramets in the homogeneous treatment. We can conclude that V. spiralis can benefit from clonal integration in heterogeneous light environments, but that the scale of these benefits is related to the quality of light environments where the clone become established.  相似文献   

7.
  1. Although it is well known that nitrogen (N) additions strongly affect ectomycorrhizal (EM) fungal community composition, less is known about how different N application rates and duration of N additions affect the functional role EM fungi play in the forest N cycle.
  2. We measured EM sporocarp abundance and species richness as well as determined the δ15N in EM sporocarps and tree foliage in two Pinus sylvestris forests characterized by short- and long-term N addition histories and multiple N addition treatments. After 20 and 39 years of N additions, two of the long-term N addition treatments were terminated, thereby providing a unique opportunity to examine the temporal recovery of EM sporocarps after cessation of high N loading.
  3. In general, increasing N availability significantly reduced EM sporocarp production, species richness, and the amount of N retained in EM sporocarps. However, these general responses were strongly dependent on the application rate and duration of N additions. The annual addition of 20 kg·N·ha−1 for the past 6 years resulted in a slight increase in the production and retention of N in EM sporocarps, whereas the addition of 100 kg·N·ha−1·yr−1 during the same period nearly eliminated EM sporocarps. In contrast, long-term additions of N at rates of ca. 35 or 70 kg·N·ha−1·yr−1 for the past 40 years did not eliminate tree carbon allocation to EM sporocarps, although there was a decrease in the abundance and a shift in the dominant EM sporocarp taxa. Despite no immediate recovery, EM sporocarp abundance and species richness approached those of the control 20 years after terminating N additions in the most heavily fertilized treatment, suggesting a recovery of carbon allocation to EM sporocarps after cessation of high N loading.
  4. Our results provide evidence for a tight coupling between tree carbon allocation to and N retention in EM sporocarps and moreover highlight the potential use of δ15N in EM sporocarps as a relative index of EM fungal sink strength for N. However, nitrogen additions at high dosage rates or over long time periods appear to disrupt this feedback, which could have important ramifications on carbon and nitrogen dynamics in these forested ecosystems.
  相似文献   

8.
The Pantanal is a large savanna wetland (138,183 km2 in Brazil), important for its wildlife, fed by tributaries of the upper Paraguay River, center of South America (Brazil, touching Bolivia and Paraguay). Uplands are plateaus (250-1,200 m high, 215,000 km2 in Brazil) and flatland is the Pantanal (80-150 m high, 147,574 km2 in Brazil). Rivers are slow moving when they meet the flatland (slope 0.3-0.5 m/km east-west; 0.03-0.15 m/km north-south), periodically overflowing their banks, creating a complex seasonal habitat range. Recurrent shallow flooding occupies 80% of the Pantanal; during the dry season flooded areas dry up. Fluctuating water levels, nutrients and wildlife form a dynamic ecosystem. A flooding regime forms distinct sub-regions within the Pantanal. A mammal survey was carried out in the sub-region of the Rio Negro from April, 2003 through March, 2004 to study the diversity and abundance of terrestrial mammals during the dry and flooding seasons. A total of 36 species were observed in the field. The capybara Hydrochaeris hydrochaeris was the most frequent species, followed by the crab-eating-fox Cerdocyon thous and the marsh deer Blastocerus dichotomus. The highest abundance of species was observed during the dry season (August and September), when there is a considerable expansion of terrestrial habitats, mainly seasonally flooded grassland. Animal abundance (in terms of observed individual frequencies) varied during the dry and wet seasons and the seasonally flooded grassland was the most utilized habitat by mammals in the dry season.  相似文献   

9.
The effects of head shape variation on growth and metamorphosis in larval salamander (Hynobius retardatus) were examined by a laboratory experiment and a field experiment. In the laboratory experiment, each larva was fed equal amounts and was prevented from accessing others in both the solitary and group treatments, although chemical cues could be transmitted through water in the group treatment. The relative head width of larvae became larger in the group treatment during the early periods but having a large head width did not finally influence growth rate and days for metamorphosis. In the field experiment, larvae were allowed to contact each other directly in two density conditions. The enlarged relative head width was linked to high growth rate in the high-density treatment but not in the low-density treatment. The larval body size distribution in the high-density condition tended to be smaller, and there was a small proportion of large-sized individuals with a broad head width. Moreover, the small number of large larvae metamorphosed much earlier than the others. The mortality of larvae in high-density conditions was much higher than that in the low-density treatments. This would be a consequence of cannibalism in the high-density condition. From the experimental results obtained, it is argued that for the larvae of H. retardatus having a large head is an adaptive tactic that maximizes fitness, particularly in temporary ponds with an unpredictable environment and in crowded conditions.  相似文献   

10.
We report for the first time the establishment of an arbuscular mycorrhizal association between Glomus sinuosum (= Sclerocystis sinuosa) and transformed Ri T-DNA carrot (Daucus carota L.) roots in monoxenic culture. The G. sinuosum sporocarps survived not as single spores, but as sporocarps in the environment. The mode of germination of G. sinuosum was by extension of hyphae around the sporocarp. Numerous vegetative spores, arbuscules and vesicles were produced after the roots were infected by the hyphae. New mature sporocarps started to form after four months in the culture system. Forty-seven sporocarps were produced on average in each culture dish after six months, and these newly produced sporocarps were capable of germination in the growth medium.  相似文献   

11.
Summary Sporocarps and sclerotia were collected for a one-year period in 23- and 180-year-old Abies amabilis stands in western Washington. All sporocarps were classified and chemically analyzed for N, P, K, Ca, Mg, Na and Fe. Lactarius sp. and Cortinarius sp. contributed the largest proportion of the total annual epigeous sporocarp production in both stands. Annual epigeous production was 34 kg/ha in the young stand and 27 kg/ha in the mature stand. Hypogeous sporocarp production increased from 1 kg ha-1 yr-1 to 380 kg ha-1 yr-1 with increasing stand age. High sclerotia biomass occurred in the young (2,300 kg/ha) and mature (3,000 kg/ha) stands. Peak sclerotia and epigeous sporocarp biomass in the young stand and epigeous and hypogeous sporocarp biomass in the mature stand coincided with the fall peak of mycorrhizal root biomass.In the young stand, sporocarps produced by decomposer fungi concentrated higher levels of Ca and Mn than those produced by mycorrhizal fungi. In the mature stand, sporocarps of decomposer fungi concentrated higher levels of N, P, Mn, Ca and Fe than sporocarps of mycorrhizal fungi. Epigeous and hypogeous sporocarps concentrated higher levels of N, P, and K than sclerotia or mycelium. The highest concentration of N (4.36%), P (0.76%), K (3.22%) and Na (1,678 ppm) occurred in epigeous sporocarps. Highest Mn (740 ppm) and Ca (20,600 ppm) concentrations occurred in mycelium, while highest Mg (1,929 ppm) concentrations were in hypogeous sporocarps and highest Fe (4,153 ppm) concentrations were in sclerotia.  相似文献   

12.
Both flooding and drought are important in determining plant distribution in wetlands. However, the roles of plant’s physiological response to flooding and drought in accounting for plant distribution are far from clear. To this end, three typical wetland plants with different distribution patterns (high-elevation species Miscanthus sacchariflorus, low-elevation species Carex brevicuspis and Polygonum hydropiper) in Dongting Lake were treated with three water levels (flooding 25 cm, control 0 cm, drought ?25 cm), and relative growth rate (RGR), malondialdehyde (MDA) content, electrolyte leakage and proline content were investigated. The RGR of the three species decreased significantly in both flooding and drought treatments. Compared to the control, the RGR of M. sacchariflorus decreased more in the flooding treatment but less in the drought treatment compared to the other two species. The contents of MDA in the three species increased in both flooding and drought treatments, except for P. hydropiper in the flooding treatment. MDA contents increased more in M. sacchariflorus in the flooding treatment but less in the drought treatment compared to the other two species. Only M. sacchariflorus had a higher electrolyte leakage in the flooding treatment, and drought led to a higher electrolyte leakage in P. hydropiper and C. brevicuspis. Proline content increased 69.2, 66.7 and 39.6 % in P. hydropiper, C. brevicuspis and M. sacchariflorus in the flooding treatment, and increased 44.2, 13.0 and 45.3 % in the drought treatment, respectively. These results suggest that M. sacchariflorus has a higher tolerance to drought but a lower tolerance to flooding than do the other two species, which might be the intrinsic mechanisms accounting for their different distribution patterns.  相似文献   

13.
为评估气候和竞争对刺槐径向生长、抗性和弹性的影响,使用年轮气候学方法建立河南省民权和济源不同密度刺槐的生长年表,确定不同密度刺槐径向生长与气象因子的关联,利用胸高断面积增量变化获得干旱事件前后不同密度刺槐的干旱脆弱性,旨在确定气候和密度对刺槐径向生长和干旱脆弱性影响。结果表明:在生长前期,不同密度刺槐的径向生长无显著差异,随着树木的生长,高密度刺槐的年轮宽度和胸高断面积增量(BAI)开始显著低于低密度(P<0.05)。Pearson相关分析结果显示,生长季的标准化植被蒸散指数、降水、相对湿度、温度和饱和水汽压亏缺是影响刺槐生长的重要因素。路径分析结果显示降水和温度是年尺度上影响刺槐生长关键因素。受干旱事件的影响,刺槐的年轮宽度和BAI均下降,低密度刺槐恢复力、弹性、相对弹性均显著高于高密度(P<0.05),在第1次干旱事件发生后,不同密度刺槐均恢复生长,但无法恢复到干旱前的生长水平。在多次干旱事件后,高密度刺槐相对弹性趋于或小于0,表明受多次干旱影响,其生长不能恢复到干旱前水平。随着时间的推移,济源刺槐在经历3次干旱后仍保留一定的弹性,但民权高密度刺槐在第2次干旱事件后相对...  相似文献   

14.
What determines the invasiveness of introduced plants is still poorly known. Many of the most invasive plant species are clonal, and physiological integration between connected individuals (ramets) of clonal plants may contribute to their ability to spread into communities and reduce performance of existing species. This contribution of integration to the invasiveness of clonal plants may be greater in denser communities. A greenhouse study was conducted to test these two hypotheses. High- and low-density communities were created by sowing seeds of eight grassland species. Each community was planted with three ramets of the stoloniferous, introduced plant Alternanthera philoxeroides that were disconnected from or left connected to ramets growing on bare soil. Connection increased the spread of Alternanthera within a community, but did not reduce community biomass. Alternanthera grew less in high-density communities, but connection did not improve its growth more than in low-density communities. Low-density communities had higher evenness when Alternanthera was connected than when it was disconnected because shoot mass was lower in the more abundant species in the community and higher in the less abundant ones. These results partly supported the first hypothesis, but not the second. The effect of integration on community structure could be due to higher resource import by the ramets of Alternanthera closer to the dominant species. Integration therefore can increase the initial spread of new clonal plant species into communities and modify the effects of this spread on community structure.  相似文献   

15.
Here, we present a new in-situ method to study the uptake of amino acids by soil fungi. We injected 14C-labeled glycine into a marshland soil and measured the rate and the 14C signature of CO2 respired from sporocarps of Pholiota terrestris over 53.5 h and 2 m. We also determined the incorporation of glycine-C into sporocarp tissue. The 14C signature of the CO2 and tissue was quantified by accelerator mass spectrometry. After the label application, the rate of CO2 flux and its 14C signature from chambers with sporocarps were significantly higher than from chambers without sporocarps, and then declined with time. Postlabel, the 14C signature of the sporocarp tissue increased by 35 per thousand. We show that this approach can be used to study below-ground food webs on an hourly time-scale while minimizing the perturbation of competitive relationships among soil microorganisms and between plants and soil microorganisms. Additionally we show that care must be taken to avoid confounding effects of sporocarp senescence on rates and radiocarbon signatures of respired CO2.  相似文献   

16.
Ectomycorrhizal (ECM) fungi historically were considered poorly represented in Neotropical forests but in the central Guiana Shield substantial areas are dominated by leguminous ECM trees. In the Upper Potaro Basin of Western Guyana, ECM fungi were sampled for 7?years during the rainy seasons of 2000–2008 in three 1-ha plots in primary monodominant forests of the ECM canopy tree Dicymbe corymbosa (Fabaceae subfam. Caesalpinioideae). Over the plot sampling period sporocarps of 126 species of putative or confirmed ECM fungi were recovered. These taxa represented 13 families and 25 genera of primarily Agaricomycetes, but also Ascomycota (Elaphomycetaceae), the majority of which are new to science. Russulaceae contained the most species (20 Russula; 9 Lactarius), followed by Boletaceae (8 genera, 25 spp.), Clavulinaceae (17 Clavulina), and Amanitaceae (16 Amanita). An additional 46 species of ECM fungi were collected in forests of the Upper Potaro Basin outside the study plots between 2000 and 2010, bringing the regional number of ECM species known from sporocarps to 172. This is the first long-term ECM macrofungal dataset from an ECM-dominated Neotropical forest, and sporocarp diversity is comparable to that recorded for ECM-diverse temperate and boreal forests. While a species accumulation curve indicated that ECM sporocarp diversity was not fully recovered inside of the plots,?~80% of the total species were recovered in the first year. Sequence data from ECM roots have confirmed the ECM status of 56 taxa represented by corresponding sporocarp data. However,?>50% of ECM fungal species from roots remain undiscovered as sporocarps, leading to a conservative estimate of?>?250 ECM species at the Potaro site. Dicymbe forests in Guyana are a hotspot for ECM fungal diversity in the Neotropics.  相似文献   

17.
Patterns of resource allocation reflect the plastic strategies that result from different selective pressures imposed by the environment. However, biomass allocation can be limited by architectural restrictions that change with the plant size. Our knowledge about sex allocation in heterosporous aquatic ferns remains scarce and studies on the reproductive strategies of these plants may yield valuable information regarding the evolutionary history of heterospory. Here, we investigate resources allocation, both in number and in biomass, to produce megasporangia and microsporangia among three species of Salvinia with different body sizes. Salvinia oblongifolia, S. auriculata and S. minima were collected in temporary ponds on the floodplain of the Pandeiros River in Brazil. We counted megasporangia and microsporangia, and measured their dry mass in each ramet. We also measured the total vegetative biomass and total reproductive biomass of each ramet in each species. Resource allocation to megasporangia production is associated with the specific body size of each species. However, the allocation for microsporangia production was higher in the species with intermediate size, which probably may be related to the drought event. The total reproductive biomass of each species was not dependent on the total vegetative biomass, but despite a similar reproductive effort, species differ on which sex is prioritized in the allocation process. Our results provide the first data about the processes underlying the sex allocation of Salvinia in the floodplains. The production of sori is size dependent in each Salvinia species and is shaped by drought, an intense selective pressure in temporary wet habitats.  相似文献   

18.
It has been proposed that relative allocation to female function increases with plant size in animalpollinated species.Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size-dependent sex allocation (SDS),throwing doubt on the generalization of SDS.Plant size,phenotypic gender,and flower production were measured in experimental populations of an aquatic,insect-pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities.The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors.In the high-density population,48% of ramets were male without female flowers,but in the low-density population all ramets were monoecious.We observed allometric growth in reproductive allocation with ramet size,as evident in biomass of reproductive structures and number of flowers.However,within both populations female and male flower production were isometric with ramet size,in contrast to an allometric growth in femaleness as predicted by SDS.Phenotypic gender was not related to ramet size in either population.The results indicated that large plants may increase both female and male function even in animal-pollinated plants,pointing towards further studies to test the hypothesis of size-dependent sex allocation using different allocation currencies.  相似文献   

19.
Recently, considerable attention has been paid to the invasion of the clonal plant Spartina alterniflora into coastal wetlands at lower elevations. In this experiment, we tested whether clonal integration improved flood tolerance in S. alterniflora daughter ramets. Daughter ramets at two growth stages (young and old ramets) were flooded to water levels of 0, 9 and 18 cm above the soil surface, and the rhizomes between mother and daughter ramets were either severed or left intact. Biomasses of connected ramets grown in controls or in shallow and deep water treatments were 119%, 108% and 149% higher in the old ramet group than those of severed ramets, respectively, whereas they were 3.0, 3.3 and 11.2 times higher in the young ramet group, respectively. At the end of the experimental period, the shoot height, connected with young ramets, in shallow and deep water treatments increased by 19% and 26%, respectively, over that in the control treatments, whereas the old ramets increased by 11% and 39%, respectively. In contrast, the shoot height of the severed young ramets was 27% and 26% lower in shallow and deep water treatments than in the control treatment, respectively. However, the shoot height of the severed old ramets remained constant with increasing water depth. We conclude that clonal integration enhances the flood tolerance of S. alterniflora daughter ramets, and the trait of clonal integration plays more important roles in severe flooding stress conditions and at early growth stages.  相似文献   

20.
Rixen C  Mulder CP 《Oecologia》2005,146(2):287-299
A positive relationship between plant species richness and ecosystem functioning has been found in a number of experimental studies. Positive species interactions at high species numbers have been suggested as a cause, but mechanisms driving positive interactions have not often been tested. In this experiment we asked three questions: (1) What is the relationship between species richness and productivity in experimentally constructed moss communities? (2) Is this relationship affected by plant density? and (3) Can changes in moisture absorption and retention explain observed relationships? To answer these questions we exposed arctic tundra moss communities of different species richness levels (1–11 species) and two different densities in the greenhouse to two levels of drought (short and long). Biomass (by the community and individual species), height and community moisture absorption and retention were measured as response variables. High species diversity increased productivity (more so in low-density plots than in high-density plots), but only when plots were watered regularly. Plot moisture retention was improved at high species richness as well, and plant height and variation in height was increased compared to plants in monoculture. Under high-density and short-drought conditions 10 out of 12 species grew better in mixture than in monoculture, but under the long drought treatment only six species did. A positive feedback loop between biomass and improved humidity under high diversity was supported by path analysis. We conclude that in this community the relationship between species richness and productivity depends on moisture availability and density, with improved water absorption and retention likely to be the mechanism for increased plant growth when drought periods are short. Furthermore, since this is the opposite of what has been found for temperate moss communities, conclusions from one system cannot automatically be extrapolated to other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号