首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information on seed dormancy is one of the primary requirements for successful seedling propagation of submerged aquatics and seagrass. Studies on Ruppia maritima seed germination have been done, but the presence, requirements, and the types of dormancy have not been well understood. A laboratory study was conducted to understand presence and types of organic dormancy of the seeds of estuarine R. maritima collected from Lake Pontchartrain, Louisiana, USA. Our study results indicate that the brackish estuarine R. maritima population produces seeds that do not have any noticeable initial morphological, physical, and physiological dormancy. Although dry stratification reduced seed viability and final germination rates, drying seems to induce an earlier germination in R. maritima. Desiccation also appears to induce an environmental dormancy that can be disrupted by exposure to water. Further study on environmental dormancy is needed to provide information to develop methods for long-term seed storage that can be employed in greenhouse seedling propagation. Handling editor: P. Viaroli  相似文献   

2.
Restoration of shallow lakes to a clear-water state, often characterized by high submerged macrophyte cover and a high proportion of piscivores such as perch, Perca fluviatilis L., frequently involves removal of a large proportion of the zoobenthivorous fish, such as bream, Abramis brama L., and roach, Rutilus rutilus L. (i.e. biomanipulation). However, establishment of submerged macrophytes is often delayed following fish removal. This is unfortunate because plant beds typically host high densities of the macroinvertebrates constituting the diet of small perch and thus help perch to go through the bottleneck from feeding on macroinvertebrates to feeding on fish. Establishment of artificial plant beds may be a useful tool to enhance macroinvertebrate population growth and thus food resources for small perch until the natural plants have established. To investigate this restoration option, we studied during two growing seasons (June–October) the composition and abundance of the macroinvertebrate community in artificial plant beds installed in shallow Lake Væng (Denmark) comprising the initial phase of a biomanipulation effort by fish removal. Lake areas with artificial plant beds exhibited substantially higher macroinvertebrate densities than the lake bottom. This suggests that artificial plant beds may be used as feeding grounds for small perch, similarly to the well-known refuge effect for zooplankton against fish predation. In this way, artificial plant beds could help maintain a clear-water state during the transient period when natural submerged vegetation is not yet established in the lake.  相似文献   

3.
《Aquatic Botany》1986,24(1):69-82
Shoot dynamics and morphology were studied in co-occuring intertidal populations of Zostera japonica Aschers. and Graebn. and Ruppia maritima L. s.l. in southwestern British Columbia. Repeated mapping and examination of cohorts of shoots (ramets) in permanent plots on a gradient in elevation showed that the appearance and loss of shoots, age structure, survivorship and leaf and rhizome dimensions were all affected by position on the gradient. For both species, the area having the greatest exposure t o air had fewer shoots and a greater percentage of shoots flowering early in the season. The duration of vegetative growth in R. maritima was the same regardless of elevation, while plants of Z. japonica at high elevation initiated and ended flowering and entered a quiescent overwintering state earlier than plants at lower elevation.  相似文献   

4.
1. To determine the influence of macrophyte beds on plankton abundance within fluvial lakes of the St Lawrence River, planktonic components (macrozooplankton, heterotrophic bacteria, and phytoplankton as chlorophyll- a [Chl- a ]) were sampled in Lake St Francis and Lake St Pierre during summer 1998. We tested the hypothesis that the abundance of planktonic components was higher within macrophyte beds in comparison to the more rapidly flushed open water areas of the fluvial lakes.
2. The large cross channel variation in zooplankton biomass was indeed correlated with the presence of dense beds of submerged macrophytes. Total macrozooplankton biomass was nine-fold greater within the beds (mean=180 μg L−1 dry mass) than in either the open water or areas with only sparse vegetation (mean=20 μg L−1 dry mass).
3. Chl- a and heterotrophic bacterial abundance were also higher in the beds, but only slightly so. There was no difference in total phosphorus or dissolved organic carbon concentrations between areas of dense vegetation, sparse vegetation or open water.
4. Macrophyte beds on the margins of the fluvial lakes allow the development of high planktonic abundance relative to the fast flowing central channel. Macrozooplankton biomass was much higher at the outflows of the lakes (∼50 μg L−1 dry mass) in comparison to the inflows (<20 μg L−1 dry mass). The increase is due to the transfer of organisms from submerged macrophyte beds into the central channel in the downstream quarter of the two lakes where the marginal littoral waters enter central channel waters.
5. Along rivers, shallow fluvial lakes appear to act as sources of plankton which is exported downstream during years of extensive littoral macrophyte development.  相似文献   

5.
In this study, we used a macrophyte model to describe the growth production and the interaction between above‐ and below‐ground organs of Potamogeton pectinatus in Lake Burullus, Egypt. Above‐ and below‐ground biomass of P. pectinatus was sampled on a monthly basis from April to December 2011 at three sites of Lake Burullus. Shoots started to grow in April, reached the maximum biomass in September and then rapidly decreased in October when they moved into the senescence stage. Tubers biomass reduced in August due to the upward translocation to shoots, but sharply increased to the maximum in October by downward translocation from shoots and roots. Potamogeton pectinatus allocated approximately 82.3% of its total biomass to shoots, 15.5% to tubers and 2.2% to roots.  相似文献   

6.
St. Lucia is the largest estuary in South Africa with extensive areas of submerged macrophytes that fluctuate rapidly in response to water level and salinity changes. Epiphytes associated with submerged macrophytes were sampled during a severe drought between November 2004 and October 2005 when very low water level and high, variable salinity characterised the estuary. Potamogeton pectinatus and Ruppia cirrhosa were the dominant submerged macrophytes throughout the estuary, with P. pectinatus occurring at relatively low salinity (∼10 ppt) and R. cirrhosa at higher salinity (9–33 ppt). Zostera capensis, normally the other dominant submerged macrophyte, was conspicuously absent under the prevailing conditions. Epiphytic biomass, estimated as chlorophyll a, varied greatly between sites and over the 12 month sampling period, ranging from 10.9 to 71.7 mg Chl a m−2 leaf area for P. pectinatus and 16.9–165.0 mg Chl a m−2 leaf area for R. cirrhosa. Epiphytic biomass was twice as high in the Southern Lake where R. cirrhosa occurred, probably because the dominant epiphytes were macroalgae. An assessment of the diatom species composition of the epiphytic community indicated the dominance of only six species throughout the estuary. Neither epiphytic biomass nor diatom species composition showed strong statistical relationships with the environmental variables measured and it is believed that biological factors may be more important than the physico-chemical environment in determining epiphyte biomass distribution. Because epiphyte biomass is dependent on the presence of host surface area it will only contribute substantially to overall system biomass and productivity when submerged macrophyte area cover is high. In the St. Lucia Estuary this will occur when the water level is high and the upper level of the salinity gradient does not increase above that of seawater.  相似文献   

7.
We examined the impacts of macrophyte beds dominated by a canopy-forming (Myriophyllum sibiricum) and a meadow-forming (Chara canescens) species on bottom shear stress (τ) and resuspension in shallow Lake Christina, Minnesota (U.S.A.). Studies were conducted in late summer, 1998, when macrophyte biomass levels exceeded 200 g m?2, and in early summer, 2000, when biomass was greatly reduced (<20 g m?2) in both plant beds. The critical shear stress (τc) of sediments, measured experimentally in the laboratory, was low (1.4 dynes cm?2) indicating potential for resuspension in the absence of macrophytes. During 1998, turbidity was low at the M. sibiricum and Chara station, rarely increasing when calculated bottom τ (calculated from wave theory assuming no biomass obstruction) exceeded τsub c sub, indicating that both beds reduced sediment resuspension at high biomass levels. In situτ (estimated τ), measured via gypsum sphere dissolution, did not exceed τc above the sediment interface in either bed during 1998. In contrast, sediment resuspension occurred in both beds during similar high winds in 2000. However, estimated τ was lower than calculated bottom τ, suggesting that at low biomass, macrophytes were having some impact on τ.  相似文献   

8.
Eelgrass beds in coastal waters of China have declined substantially over the past 30 years. In this study, a simple new transplanting technique was developed for eelgrass (Zostera marina L.) restoration. To assist in anchoring single shoots, several rhizomes of rooted shoots were bound to a small elongate stone (50–150 g) with biodegradable thread (cotton or hemp), and then the bound packet was buried at an angle in the sediments at a depth of 2–4 cm. This stone anchoring method was used to transplant eelgrass in early November 2009 and late May 2010 in Huiquan Bay, Qingdao. The method led to high success. Three month survivorship of the transplanted shoots at the two transplant sites was >95%. From April 20 to November 19, 2012, the following characteristics of the 2009 and 2010 transplanted eelgrass beds were monitored: morphological changes, shoot density, shoot height, leaf biomass, and sediment particle size. Results showed that the sexual reproduction period of the planted eelgrass was from April to August, and vegetative reproduction reached its peak in autumn. Maximum shoot height and biomass were observed in June and July. After becoming established, the transplanted eelgrass beds were statistically equal to natural eelgrass beds nearby in terms of shoot height, biomass, and seasonal variations. This indicates that the transplant technique is effective for eelgrass restoration in coastal waters.  相似文献   

9.
We have developed a procedure to process echosounding data to map the distribution of submerged aquatic macrophytes in the southern basin of Lake Biwa, a water body that has a surface area of 52 km2 and a mean depth of 4 m. Echosounding observations were made along 27 transect lines spaced at 500-m intervals on August 4 and September 2 and 30, 2003. Quantitative vegetation data including percent coverage, mean vegetation height, and percent vegetation infestation were directly determined using image data from the echosounder recorded digitally on videotape. Based on the image data from an echosounder, a regression model was developed for estimating biomass of submerged macrophytes. The regression model using the total echo strength as the explanatory variable could reliably estimate macrophyte biomass up to 300 g m−2. Distribution maps of macrophyte height and biomass suggest that the recent summer decline of submerged macrophytes started earlier in shallow areas (<3 m of depth) than deep areas (>4 m) in the southern basin of Lake Biwa.  相似文献   

10.
李宽意  刘正文  杨宏伟  李娟  李传红 《生态学报》2007,27(10):4209-4213
在室外实验条件下,研究了模拟牧食损害(动物牧食所造成的损害)对伊乐藻植株生长的影响。结果表明:3种人工损害方式(去除植株50%叶片,去除植株顶端,以及同时去除植物顶端与50%叶片)对伊乐藻的生长率、主枝与分枝长度的增长、植物的干物质、氮、磷含量等均有不同程度的影响。其中,去叶与去顶去叶损害显著抑制了伊乐藻的生长,相对生长率分别占未受损植株的62.8%与74.4%;去顶与去顶去叶损害使伊乐藻主枝生长几乎停止,却显著促进了植物分枝的生长;去叶损害对植株的生长率、主枝与分枝长度的生长无明显抑制并却显著地降低了分枝的重量。对受损伊乐藻生长的机理进行了分析,探讨了东太湖伊乐藻现存量近年来迅速增加的原因并认为植物残体是伊乐藻种群扩张的重要因素之一。  相似文献   

11.
《Acta Oecologica》2001,22(4):209-217
In plant communities of the Mediterranean Basin most plant species reach their blooming peak in spring and have characteristically short flowering periods of two-three months. The perennial herb Lobularia maritima represents an exception to these characteristics, because it flowers for almost 10 months, and has its flowering peak in autumn. In this five-year study, we describe the flowering pattern of L. maritima at the population and community levels. Despite the unusually extended flowering period of L. maritima, the species showed characteristic low among-year variability in the length of the flowering period but large interannual variation in the distribution of flowers throughout the flowering period. The flowering pattern (unimodal or bimodal) of L. maritima individuals differed among the five years, suggesting that L. maritima plants are plastic enough to tailor their flowering to variable environmental conditions. We conclude that flowering phenology of L. maritima represents a very particular case in the plant community studied, and the influence of abiotic and biotic factors on the phenology of this species is discussed.  相似文献   

12.
The invasion of Myriophyllum spicatum into Lake Nasser, and its impact on submerged macrophyte communities are quantitatively documented. Samples of macrophytes, water and hydrosoil were collected from 17 sites, in October and November 2002. The average dry weight standing crop of each species per grapnel haul was determined at each depth zone (sampling site). Twenty-one environmental variables were measured (12 water and 9 hydrosoil variables). Canonical correspondence analysis (CCA) was used to determine species–environment relationships. Comparing these relationships of the present study with those detected in 1988–1990 indicated significant changes in water and hydrosoil characteristics. These changes are also implicated in the submerged macrophyte communities. M. spicatum has replaced the originally dominant submerged macrophyte Najas marina subsp. armata. The study indicated that the invasion of M. spicatum depends not only on its attributes, but also on the physico-chemical characteristics of Lake Nasser.  相似文献   

13.
Pettersson  Kurt  Grust  Karin  Weyhenmeyer  Gesa  Blenckner  Thorsten 《Hydrobiologia》2003,501(1-3):75-81
The effect of submerged macrophytes on interactions among epilimnetic phosphorus, phytoplankton, and heterotrophic bacterioplankton has been acknowledged, but remains poorly understood. Here, we test the hypotheses that the mean summer phytoplankton biomass (chlorophyll a): phosphorus ratios decrease with increased macrophyte cover in a series of nine lakes. Further, we test that both planktonic respiration and bacterioplankton production increase with respect to phytoplankton biomass along the same gradient of increasing macrophyte cover. Increased macrophyte cover was associated with a lower fraction of particulate phosphorus in epilimnia, with total particulate phosphorus declining from over 80% of total phosphorus in a macrophyte free lake to less than 50% in a macrophyte rich lake. Phytoplankton biomass (chlorophyll a) too was lower in macrophyte dominated lakes, despite relatively high levels of total dissolved phosphorus. Planktonic respiration and bacterioplankton production were higher in macrophyte rich lakes than would be expected from phytoplankton biomass alone, pointing to a subsidy of bacterioplankton metabolism by macrophyte beds at the whole lake scale. The results suggest that the classical view of pelagic interactions, which proposes phosphorus determines phytoplankton abundance, which in turn determines bacterial abundance through the production of organic carbon, becomes less relevant as macrophyte cover increases.  相似文献   

14.
A dramatic decline in biomass and areal coverage of the submersed macrophyte Myriophyllum spicatum in Lake Wingra, Wisconsin, USA during the mid-1970's is documented using aerial photography, vegetation surveys, and quadrat biomass sampling. Over the same period, light penetration as measured by Secchi disc transparency and extinction coefficient decreased substantially. During this period, extinction coefficient was closely correlated with chlorophyll a levels implicating phytoplankton as the major source of decreased light penetration. A growth model for M. spicatum predicts a substantial decline in macrophyte biomass when extinction coefficient is increased to the levels reported since 1977. Available data do not show whether the phytoplankton increase preceeded or followed the macrophyte decline. Nonetheless it is clear that phytoplankton growth can account for a substantial portion of the decline and that macrophyte recovery will be difficult given the phytoplankton-induced decrease in water clarity.  相似文献   

15.
We studied the seasonal resource dynamics between organs of wild rice (Zizania latifolia (Griseb.) Turcz. ex Stapf.) to obtain a better understanding of its growth dynamics, carbon and nutrient translocation. The results of observation from January 2002 to February 2004 showed the shoot density markedly increased after emergence of shoots at the end of March until May (up to 800 ind/m2). However the shoot mortality due to self-thinning reduced the total new shoots by more than 70% by the end of July. Thereafter, the shoot density was nearly constant with the aboveground biomass peaking at the end of August. In the late winter, the rhizome biomass declined by respiration loss to about 25% of its peak value. Meanwhile the decline in rhizome reserves from January to the end of April was about 20%. This small reduction compared with other perennial emergent species implies that there is a lower contribution of rhizome reserves to support new shoot formation. The initial heterotrophic growth of new shoots based on the rhizome resources lasted for a short period, then switched to autotrophic growth at the end of April or the beginning of May. Thus, in most periods of foliage development, nutrients were obtained mostly from soil through uptake by roots, not through resource allocation of the rhizome. In autumn, the standing dead shoots retained most of the nutrients and carbohydrates without translocating downwards. This suggests that in practice, the plant can remove nutrients from sediment more efficiently than other emergent plants.  相似文献   

16.
SUMMARY.
  • 1 Macroinvertebrates (>0.1 mg, fresh weight) were collected every 2 weeks for 18 weeks from weedbeds dominated by either the macroalga Chara or rooted plants (mostly Isoetes sp., Potamogeton filiformis, Nuphar variegatum and Myriophyllum exalbescens) in Narrow Lake, Alberta, Canada. Significant differences in total biomass, taxonomic composition, and size-structure of the macroinvertebrate community were found between the two weedbed types.
  • 2 Total biomass of macroinvertebrates in the Chara beds (seasonal mean 26.4 g m?2) was consistently higher than in the rooted-plant weedbeds (seasonal mean 7.6 g m?2).
  • 3 The macroinvertebrate community of the Chara beds was dominated by chironomids, anisopterans, gastropods and sphaerid clams whereas amphipods dominated the community in the rooted-plant weedbeds.
  • 4 On average, the proportion of total biomass in the various size-classes (biomass size-spectrum) of the macroinvertebrate community in Chara beds varied very little between 1 and 512 mg. In rooted plant weedbeds, the spectrum showed a strong peak in the 4–8 mg size-class, a weak peak in the 32–64 mg size-class, and proportionately low biomass in the 128–256 mg and 256–512 mg size-classes. The slope of the normalized size-spectrum for the macroinvertebrate community of the Chara beds (-0.89) was significantly different from that of the rooted plant community (-1.11). The biomass of large organisms (>64 mg) was 10 times greater in the Chara beds than in the rooted-plant weedbeds.
  • 5 The species composition of aquatic macrophyte beds can greatly influence the abundance, taxonomic composition, and size-structure of the littoral zone macroinvertebrate community. Therefore, any changes in plant species composition of weedbeds, through introduction of exotic plant species or introduction (or loss) of an efficient grazer (e.g. crayfish), have the potential to alter greatly the structure of the macroinvertebrate community in a lake, with unknown consequences to fish and waterfowl dependent upon these prey.
  相似文献   

17.
We investigated seasonal changes in the density of epiphytic cladocerans Alona spp. (Chydoridae, Anomopoda) in two habitats, emergent and submerged aquatic plants, in Lake Suwa, Japan, from April to August 1998 and from April to November 2000. Alona had a density peak in early June on reeds (emergent) and in late June on Potamogeton malaianus (submerged). In summer, Alona density remained low in both habitats. Although density was positively correlated with the abundance of epiphytic algae, the birth rate was constant and no correlation between algal abundance and clutch size was detected. In a field experiment using ropes as an artificial substrate covered with high and low densities of epiphytic algae as food, more Alona attached to the ropes with the high density of algae. These results suggest that Alona may select food-rich habitats and migrate seasonally, and that migration is an important factor in the population dynamics of epiphytic chydorid cladocerans such as Alona. In Lake Suwa, Alona may migrate from the reed zone to the submerged macrophyte zone in June.  相似文献   

18.
附着生物对太湖沉水植物影响的初步研究   总被引:6,自引:0,他引:6  
在水草生长比较旺盛的季节(5—6月),以富营养化严重的太湖梅梁湾和水草较丰富的贡湖湾作为采样区域,研究了2种环境状态不同湖区附着生物的现存量及其对沉水植物的影响.结果表明:富营养化严重水域植物上附着生物的现存量较高,但不同种类植物间有所差异.附着生物显著抑制水生植物光合作用,6月的抑制作用高达91.9%以上.这种抑制作用的大小随附着生物量的增加而增强,且受宿主植物的影响.  相似文献   

19.
20.
Ecological restoration in eutrophic Lake Wuli: A large enclosure experiment   总被引:2,自引:0,他引:2  
A large-scale enclosure experiment for lake restoration was carried out in Lake Wuli, a northern bay of shallow and eutrophic Lake Taihu in China. The large enclosure with an area of 10 ha was set up in the littoral zone and was bordered by waterproof fabric which did not cover the sediments. Multiple approaches were used and included fish removal, piscivorous fish stocking, shoreline reconstruction, aquatic macrophyte planting, benthic macro-animal stocking, and silver carp cultivation in pens for reduction of cyanobacteria. The results showed that the coverage of aquatic macrophytes increased from 0% to 45.7%. Mean concentrations of TN and TP inside the enclosure from May 2004 to May 2008 were 22.2% and 26.0% of those outside, respectively. Secchi depth was 0.40 m outside the enclosures and 0.75 m inside. However, responses of phytoplankton to the restoration project lagged behind improvement of water quality and reestablishment of aquatic plants. The phytoplankton biomass gradually decreased after the third year of the restoration. Stocking piscivorous fish and planting submerged macrophytes could not increase zooplankton biomass and enhance graze pressure on phytoplankton, most likely due to high omnivorous fish density and lower nutrition inside the enclosure. Higher grazing pressure of zooplankton on phytoplankton was observed in May and October every year. Zooplankton to phytoplankton biomass ratios were significantly negatively correlated with phytoplankton biomass outside (r = −0.440, p < 0.01) and inside the enclosure (r = −0.336, p < 0.05) from February 2004 to March 2007. Therefore, phytoplankton biomass inside and outside the enclosure was lower in May and October. Higher grazing pressure of zooplankton on phytoplankton in spring may result in occurrence of the clear-water phase that facilitated growth of submerged macrophytes in the littoral in Lake Wuli, and a clear-water state and improved water quality would likely be sustained throughout the year after reestablishment of submerged macrophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号