首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Peroxisomal proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA) receptor-mediated temporal lobe epilepsy (TLE). We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC) analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.  相似文献   

4.
5.
6.
7.

Background

Clinical trials have shown that treatment of patients with type 2 diabetes with pioglitazone, a peroxisome proliferator-activated receptor (PPAR)γ agonist, reduces cardiovascular events. However, the effect of PPARγ agonists on endoplasmic reticulum (ER) stress that plays an important role in the progression of atherosclerosis has not been determined. We sought to determine the effect of PPARγ agonists on ER stress induced by palmitate, the most abundant saturated fatty acid in the serum.

Methods and Results

Protein expression of ER stress marker was evaluated by Western blot analysis and stearoyl-CoA desaturase1 (SCD-1) mRNA expression was evaluated by qRT-PCR. Macrophage apoptosis was detected by flowcytometry. Pioglitazone and rosiglitazone reduced palmitate-induced phosphorylation of PERK, a marker of ER stress, in RAW264.7, a murine macrophage cell line. Pioglitazone also suppressed palmitate-induced apoptosis in association with inhibition of CHOP expression, JNK phosphorylation and cleavage of caspase-3. These effects of pioglitazone were reversed by GW9662, a PPARγ antagonist, indicating that PPARγ is involved in this process. PPARγ agonists increased expression of SCD-1 that introduces a double bond on the acyl chain of long-chain fatty acid. 4-(2-Chlorophenoxy)-N-(3-(3-methylcarbamoyl)phenyl)piperidine-1-carboxamide, an inhibitor of SCD-1, abolished the anti-ER stress and anti-apoptotic effects of pioglitazone. These results suggest that PPARγ agonists attenuate palmitate-induced ER stress and apoptosis through SCD-1 induction. Up-regulation of SCD-1 may contribute to the reduction of cardiovascular events by treatment with PPARγ agonists.  相似文献   

8.
Endotoxin tolerance (ET) represents a state of an altered immune response induced by multiple stimulations of a cell, a tissue, or an organism with lipopolysaccharide. Characteristics of ET include downregulation of induction of proinflammatory genes (TNFα, IL6, and others) and enhancement of induction of antiinflammatory genes (IL10, TGFβ). ET generally has protective functions; nevertheless, it might result in a state of innate immune deficiency and cause negative outcomes. A current issue is the search for the mechanisms controlling the level of inflammation in the course of endotoxin tolerance. In this work, we investigated the change in cyclooxygenase 2 (Cox2) expression in the model of endotoxin tolerance in astrocytes and analyzed the possibility of regulating this process applying nuclear receptor PPAR agonists. Our results indicate that: 1) endotoxin tolerance can be induced in astrocytes and results in TNFα and Cox2 mRNA induction decrease upon secondary stimulation; 2) tolerance is revealed on the level of TNFα release and Cox2 protein expression; 3) PPAR agonists GW7647, L-165041, and rosiglitazone control Cox2 mRNA expression levels under conditions of endotoxin tolerance. In particular, rosiglitazone (a PPARγ agonist) induces Cox2 mRNA expression, while GW7647 (a PPARα agonist) and L-165041 (a PPARβ agonist) suppress the expression. Our results demonstrate that Cox2 can be upand downregulated during endotoxin tolerance in astrocytes, and PPAR agonists might be effective for controlling this target under conditions of multiple proinflammatory stimulations of brain tissues with endotoxin.  相似文献   

9.
A novel peroxisome proliferator-activated receptor (PPAR) modulator, Z-551, having both PPARα agonistic and PPARγ antagonistic activities, has been developed for the treatment of obesity and obesity-related metabolic disorders. We examined the effects of Z-551 on obesity and the metabolic disorders in wild-type mice on the high-fat diet (HFD). In mice on the HFD, Z-551 significantly suppressed body weight gain and ameliorated insulin resistance and abnormal glucose and lipid metabolisms. Z-551 inhibited visceral fat mass gain and adipocyte hypertrophy, and reduced molecules involved in fatty acid uptake and synthesis, macrophage infiltration, and inflammation in adipose tissue. Z-551 increased molecules involved in fatty acid combustion, while reduced molecules associated with gluconeogenesis in the liver. Furthermore, Z-551 significantly reduced fasting plasma levels of glucose, triglyceride, free fatty acid, insulin, and leptin. To elucidate the significance of the PPAR combination, we examined the effects of Z-551 in PPARα-deficient mice and those of a synthetic PPARγ antagonist in wild-type mice on the HFD. Both drugs showed similar, but weaker effects on body weight, insulin resistance and specific events provoked in adipose tissue compared with those of Z-551 as described above, except for lack of effects on fasting plasma triglyceride and free fatty acid levels. These findings suggest that Z-551 ameliorates HFD-induced obesity, insulin resistance, and impairment of glucose and lipid metabolisms by PPARα agonistic and PPARγ antagonistic activities, and therefore, might be clinically useful for preventing or treating obesity and obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and dyslipidemia.  相似文献   

10.
The PPARγ nuclear receptor regulates the expression of genes involved in lipid and carbohydrate metabolism, and it has protective effects in some patients with type 2 diabetes. Nevertheless, the therapeutic value of the PPARγ nuclear receptor protein is limited due to the secondary effects of some PPARγ ligands. Because the downstream effects of PPARγ are determined by the binding of specific cofactors that are mediated by ligand-induced conformational changes, we evaluated the differential effects of various ligands on the binding of certain cofactors associated with PPARγ. The ligands used were rosiglitazone for treating type 2 diabetes and telmisartan for treating arterial hypertension. Functional, phenotypic, and molecular studies were conducted on pre-adipocyte 3T3-L1 and functional studies in U2OS cells. The moderating influence of various cofactor families was evaluated using transient transfection assays. Our findings confirm that telmisartan has a partial modulating effect on PPARγ activity compared to rosiglitazone. The cofactors SRC1 and GRIP1 mediate the activity of telmisartan and rosiglitazone and partially determine the difference in their effects. Studying the modulating activity of these cofactors can provide interesting insights for developing new therapeutic approaches for certain metabolic diseases.  相似文献   

11.
The peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in adipocyte differentiation and insulin sensitivity. Its ligand rosiglitazone has anti-diabetic effect but is frequently accompanied with some severe unwanted effects. The aim of the current study was to compare the anti-diabetic effect of CMHX008, a novel thiazolidinedione-derivative, with rosiglitazone. A luciferase assay was used to evaluate in vitro PPARγ activation. 3T3-L1 cells were used to examine adipocyte differentiation. High fat diet (HFD) mice were used to examine in vivo insulin sensitivity. The mRNA levels were evaluated by real-time RT-PCR. Serum biochemical and hormonal variables were assessed using a clinical chemistry analyser. CMHX008 displayed a moderate PPARγ agonist activity, and promoted 3T3-L1 preadipocyte differentiation with lower activity than rosiglitazone. CMHX008 regulated the expression of PPARγ target genes in a different manner from rosiglitazone. CMHX008 increased the expression and secretion of adiponectin with the similar efficacy as rosiglitazone, but only 25% as potent as rosiglitazone for the induction of adipocyte fatty acid binding protein. Treatment of CMHX008 and rosiglitazone protected mice from high fat diet (HFD)-induced glucose intolerance, hyperinsulinemia and inflammation. CMHX008 reduced the mRNA expression of M1 macrophage markers, and significantly increased the expressions of M2 markers. In conclusion, CMHX008 shared the comparable insulin-sensitizing effects as rosiglitazone with lower adipogenic capacity and might potentially be developed into an effective agent for the treatment of diabetes and metabolic disorders.  相似文献   

12.
Oxidized phospholipids have been shown to exhibit pleiotropic effects in numerous biological contexts. For example, 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC), an oxidized phospholipid formed from alkyl phosphatidylcholines, is a peroxisome proliferator–activated receptor gamma (PPARγ) nuclear receptor agonist. Although it has been reported that PPARγ agonists including thiazolidinediones can induce plasma volume expansion by enhancing renal sodium and water retention, the role of azPC in renal transport functions is unknown. In the present study, we investigated the effect of azPC on renal proximal tubule (PT) transport using isolated PTs and kidney cortex tissues and also investigated the effect of azPC on renal sodium handling in vivo. We showed using a microperfusion technique that azPC rapidly stimulated Na+/HCO3 cotransporter 1 (NBCe1) and luminal Na+/H+ exchanger (NHE) activities in a dose-dependent manner at submicromolar concentrations in isolated PTs from rats and humans. The rapid effects (within a few minutes) suggest that azPC activates NBCe1 and NHE via nongenomic signaling. The stimulatory effects were completely blocked by specific PPARγ antagonist GW9662, ERK kinase inhibitor PD98059, and CD36 inhibitor sulfosuccinimidyl oleate. Treatment with an siRNA against PPAR gamma completely blocked the stimulation of both NBCe1 and NHE by azPC. Moreover, azPC induced ERK phosphorylation in rat and human kidney cortex tissues, which were completely suppressed by GW9662 and PD98059 treatments. These results suggest that azPC stimulates renal PT sodium-coupled bicarbonate transport via a CD36/PPARγ/mitogen-activated protein/ERK kinase/ERK pathway. We conclude that the stimulatory effects of azPC on PT transport may be partially involved in volume expansion.  相似文献   

13.
14.
In EAE (experimental autoimmune encephalomyelitis), agonists of PPARs (peroxisome proliferator-activated receptors) provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte) maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells), and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins). We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day), GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.  相似文献   

15.
16.
17.
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.  相似文献   

18.

Background

Abnormal trophoblast differentiation and function is the basis of many placenta-based pregnancy disorders, including pre-eclampsia and fetal growth restriction. PPARγ, a ligand-activated nuclear receptor, plays essential roles in placental development; null murine embryos die at midgestation due to abnormalities in all placental layers, in particular, small labyrinth and expanded giant cell layer. Previous studies have focused mostly on the role of PPARγ in trophoblast invasion. Based on the previously reported role of PPARγ in preadipocyte differentiation, we hypothesized that PPARγ also plays a pivotal role in trophoblast differentiation. To test this hypothesis, we report derivation of wild-type and PPARγ-null trophoblast stem (TS) cells.

Methodology/Principal Findings

PPARγ-null TS cells showed defects in both proliferation and differentiation, specifically into labyrinthine trophoblast. Detailed marker analysis and functional studies revealed reduced differentiation of all three labyrinthine lineages, and enhanced giant cell differentiation, particularly the invasive subtypes. In addition, rosiglitazone, a specific PPARγ agonist, reduced giant cell differentiation, while inducing Gcm1, a key regulator in labyrinth. Finally, reintroducing PPARγ into null TS cells, using an adenovirus, normalized invasion and partially reversed defective labyrinthine differentiation, as assessed both by morphology and marker analysis.

Conclusions/Significance

In addition to regulating trophoblast invasion, PPARγ plays a predominant role in differentiation of labyrinthine trophoblast lineages, which, along with fetal endothelium, form the vascular exchange interface with maternal blood. Elucidating cellular and molecular mechanisms mediating PPARγ action will help determine if modulating PPARγ activity, for which clinical pharmacologic agonists already exist, might modify the course of pregnancy disorders associated with placental dysfunction.  相似文献   

19.
As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, PPARγ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that PPARγ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of PPARγ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of PPARγ. [BMB Reports 2014; 47(11): 599-608]  相似文献   

20.
Previous work has provided strong evidence for a role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and transforming growth factor-β (TGFβ) in inflammation and tumor stroma function, raising the possibility that both signaling pathways are interconnected. We have addressed this hypothesis by microarray analyses of human diploid fibroblasts induced to myofibroblastic differentiation, which revealed a substantial, mostly reverse crosstalk of both pathways and identified distinct classes of genes. A major class encompasses classical PPAR target genes, including ANGPTL4, CPT1A, ADRP and PDK4. These genes are repressed by TGFβ, which is counteracted by PPARβ/δ activation. This is mediated, at least in part, by the TGFβ-induced recruitment of the corepressor SMRT to PPAR response elements, and its release by PPARβ/δ ligands, indicating that TGFβ and PPARβ/δ signals are integrated by chromatin-associated complexes. A second class represents TGFβ-induced genes that are downregulated by PPARβ/δ agonists, exemplified by CD274 and IL6, which is consistent with the anti-inflammatory properties of PPARβ/δ ligands. Finally, cooperative regulation by both ligands was observed for a minor group of genes, including several regulators of cell proliferation. These observations indicate that PPARβ/δ is able to influence the expression of distinct sets of both TGFβ-repressed and TGFβ-activated genes in both directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号