首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Pulsatile hyperglycaemia resulting in oxidative stress may play an important role in the development of macrovascular complications. We investigated the effects of sustained vs. pulsatile hyperglycaemia in insulin resistant rats on markers of oxidative stress, enzyme expression and glucose metabolism in liver and aorta. We hypothesized that liver’s ability to regulate the glucose homeostasis under varying states of hyperglycaemia may indirectly affect oxidative stress status in aorta despite the amount of glucose challenged with.

Methods

Animals were infused with sustained high (SHG), low (SLG), pulsatile (PLG) glucose or saline (VEH) for 96 h. Oxidative stress status and key regulators of glucose metabolism in liver and aorta were investigated.

Results

Similar response in plasma lipid oxidation was observed in PLG as in SHG. Likewise, in aorta, PLG and SHG displayed increased expression of glucose transporter 1 (GLUT1), gp-91PHOX and super oxide dismutase (SOD), while only the PLG group showed increased accumulation of oxidative stress and oxidised low density lipoprotein (oxLDL) in aorta.

Conclusion

Pulsatile hyperglycaemia induced relatively higher levels of oxidative stress systemically and in aorta in particular than overt sustained hyperglycaemia thus supporting the clinical observations that pulsatile hyperglycaemia is an independent risk factor for diabetes related macrovascular complications.  相似文献   

2.

Purpose

To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC) on this process.

Methods

Human dental pulp cells (hDPCs) were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits.

Results

Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS) and depletion of glutathione (GSH), differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI) staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers.

Conclusions

Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis.  相似文献   

3.
APE1/Ref-1, normally localized in the nucleus, is a regulator of the cellular response to oxidative stress. Cytoplasmic localization has been observed in several tumors and correlates with a poor prognosis. Because no data are available on liver tumors, we investigated APE1/Ref-1 subcellular localization and its correlation with survival in 47 consecutive patients undergoing hepatocellular carcinoma (HCC) resection. APE1/Ref-1 expression was determined by immunohistochemistry in HCC and surrounding liver cirrhosis (SLC) and compared with normal liver tissue. Survival probability was evaluated using Kaplan-Meier curves (log-rank test) and Cox regression. Cytoplasmic expression of APE1/Ref-1 was significantly higher in HCC than in SLC (P = 0.00001); normal liver showed only nuclear reactivity. Patients with poorly differentiated HCC showed a cytoplasmic expression three times higher than those with well-differentiated HCC (P = 0.03). Cytoplasmic localization was associated with a median survival time shorter than those with negative cytoplasmic reactivity (0.44 compared with 1.64 years, P = 0.003), and multivariable analysis confirmed that cytoplasmic APE1/Ref-1 localization is a predictor of survival. Cytoplasmic expression of APE1/Ref-1 is increased in HCC and is associated with a lower degree of differentiation and a shorter survival time, pointing to the use of the cytoplasmic localization of APE1/Ref-1 as a prognostic marker for HCC.  相似文献   

4.

Background

UNC50 has long been recognized as a Golgi apparatus protein in yeast, and is involved in nicotinic receptor trafficking in Caenorhabditis elegans, but little is known about UNC50 gene function in human biology despite it being conserved from yeast to high eukaryotes.

Objectives

We investigated the relation between UNC50 and human hepatocellular carcinoma (HCC) and the potential mechanisms underlying HCC development.

Methods

UNC50 mRNA expression patterns in 12 HCC and adjacent non-cancerous tissues determined using northern blotting were confirmed by real-time PCR in another 44 paired tissues. Microarray experiments were used to screen for global effects of UNC50 knockdown in the Hep3B cell line, and were confirmed by real-time PCR, western blotting, flow cytometry, and tetrazolium assay in both UNC50 overexpression and knockdown Hep3B cells.

Results

UNC50 expression levels were upregulated in HCC tissues in comparison with the adjacent non-cancerous tissues. UNC50 knockdown reduced mRNA levels of the downstream targets of the epidermal growth factor receptor (EGFR) pathway: cyclin D1 (CCND1), EGF, matrix metalloproteinase-7 (MMP7), aldose reductase-like 1 (AKR1B10), cell surface–associated mucin 1 (MUC1), and gastrin (GAST). Moreover, UNC50 influenced EGF, inducing cell cycle entry by affecting cell surface EGFR amounts.

Conclusions

UNC50 may plays some roles in HCC progression by affecting the EGFR pathway.  相似文献   

5.

Objective

Stimulation with saturated fatty acids has been shown to induce oxidative stress and endoplasmic reticulum (ER) stress in β cells and has been recognized as an important component of the pathogenesis of type 2 diabetes (T2D). Interleukin-22 (IL-22) plays a critical role in preventing β cells from oxidative and ER stress, and autophagy is associated with the survival and function of β cells. However, whether IL-22 alleviates cellular stress through activation of autophagy is unclear. In this study, we investigated the effects of IL-22 on rat insulin-secreting cells and the mechanisms underlying IL-22 and lipotoxicity-induced oxidative and ER stress in vitro.

Methods

The levels of reactive oxygen species (ROS) were detected by flow cytometry and fluorescence microscopy. The protein expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), microtubule-associated protein light chain 3B (LC3B) and Bcl-2-interacting myosin-like coiled-coil protein (Beclin-1) were evaluated by western blot. Transmission electron microscopy was utilized to observe the process of autophagy.

Results

Palmitate induced increased levels of ROS and the overexpression of GRP78 and CHOP, whereas these effects were partly reversed by treatment with IL-22. Furthermore, IL-22 upregulated the protein expression of Beclin-1 and the conversion of LC3B-I to LC3B-II. Moreover, the aforementioned effects were partly suppressed by treating cells with 3-methyladenine (3-MA), an autophagy inhibitor.

Conclusions

Our results suggest that IL-22 alleviated the oxidative and ER stress induced by palmitate, which was likely mediated by autophagy. These findings could facilitate the development of novel therapeutic strategies to suppress the progression of T2D.  相似文献   

6.
7.

Background

Few studies in epidemiology have evaluated the effects of gene-environment interaction on oxidative stress, even though this interaction is an important etiologic factor in lung carcinogenesis. We investigated the effects of the genetic polymorphisms of paraoxonase 1 (PON1), smoking, and the interaction between the two on lung cancer risk and oxidative stress.

Methods

This study’s subjects consisted of 416 newly diagnosed lung cancer patients and an equal number of matched controls. The GoldenGate assay was used for genotypic analyses of the PON1 gene. Urinary 8-hydroxydeoxyguanosine (8-OHdG) and thiobarbituric acid reactive substances levels were measured as indicators of oxidative stress.

Results

The PON1 rs662 AA genotype showed a significantly lower risk of lung cancer than the GG genotype (OR = 0.60, 95% CI: 0.36–0.99). The protective effect of the PON1 rs662 AA genotype on lung cancer risk was limited to non-smokers. Lung cancer patients who had the rs662 A allele showed a dose-dependent association between smoking status and oxidative stress markers. Among non-smoking lung cancer patients, urinary 8-OHdG levels were significantly lower in individuals with the rs662 GA and AA genotypes than in those with the GG genotype. Furthermore, we found a significant interaction effect between PON1 rs662 and smoking status on urinary 8-OHdG levels in lung cancer patients.

Conclusions

Our results suggest that the protective effect of PON1 rs662 SNP against lung carcinogenesis and the induction of oxidative stress might be modulated by the interaction between PON1 genetic polymorphisms and tobacco smoking.  相似文献   

8.

Background

Calpain is activated following myocardial infarction and ablation of calpastatin (CAST), an endogenous inhibitor of calpains, promotes left ventricular remodeling after myocardial infarction (MI). The present study aimed to investigate the effect of transgenic over-expression of CAST on the post-infarction myocardial remodeling process.

Method

We established transgenic mice (TG) ubiquitously over-expressing human CAST protein and produced MI in TG mice and C57BL/6J wild-type (WT) littermates.

Results

The CAST protein expression was profoundly upregulated in the myocardial tissue of TG mice compared with WT littermates (P < 0.01). Overexpression of CAST significantly reduced the infarct size (P < 0.01) and blunted MI-induced interventricular hypertrophy, global myocardial fibrosis and collagen I and collagen III deposition, hypotension and hemodynamic disturbances at 21 days after MI. Moreover, the MI-induced up-regulation and activation of calpains were obviously attenuated in CAST TG mice. MI-induced down-regulation of CAST was partially reversed in TG mice. Additionally, the MI-caused imbalance of matrix metalloproteinases and their inhibitors was improved in TG mice.

Conclusions

Transgenic over-expression of CAST inhibits calpain activation and attenuates post-infarction myocardial remodeling.  相似文献   

9.

Background

Pancreatic islets are known to contain low level of antioxidants that renders them vulnerable to oxidative stress. Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Activation of Nrf2 pathway induces up-regulation of numerous genes encoding antioxidant and phase II detoxifying enzymes and related proteins. However, little is known regarding the role of this pathway in human islet cells. The aim was to investigate the effect of Nrf2 activator (dh404, CDDO-9,11-dihydro-trifluoroethyl amide) on human islet cells.

Methods

Human islets were obtained from cadaveric donors. After dh404 treatment, Nrf2 translocation, mRNA expression, and protein abundance of its key target gene products were examined. The proportion of dh404-treated or non-treated viable islet beta cells was analyzed using flowcytemetry. The cytoprotective effects against oxidative stress and production of inflammatory mediators, and in vivo islet function after transplantation were determined.

Results

Nrf2 nuclear translocation was confirmed by con-focal microscope within 2 hours after treatment, which was associated with a dose-dependent increase in mRNA expression of anti-oxidants, including NQO1, HO-1, and GCLC. Enhanced HO-1 expression in dh404 treated islets was confirmed by Western Blot assay. Islet function after transplantation (2000 IEQ/mouse) to diabetic nude mice was not affected with or without dh404 treatment. After induction of oxidative stress with hydrogen peroxide (200 μM) the proportion of dh404-treated viable islet cells was significantly higher in the dh404-treated than untreated islets (74% vs.57%; P<0.05). Dh404 significantly decreased production of cytokines/chemokines including IL-1β, IL-6, IFN-γ and MCP-1.

Conclusion

Treatment of human pancreatic islets with the potent synthetic Nrf2 activator, dh404, significantly increased expression of the key anti-oxidants enzymes, decreased inflammatory mediators in islets and conferred protection against oxidative stress in beta cells.  相似文献   

10.

Introduction

Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood.

Methods

BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue.

Results

Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF.

Conclusions

The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation.  相似文献   

11.

Background

Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice.

Methods

C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation.

Results

BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils.

Conclusions

Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice.  相似文献   

12.

Background

Transient global cerebral ischemia/reperfusion (I/R) is a major perioperative complication, and diabetes increases the response of oxidative stress and inflammation induced by I/R. The objective of this study was to determine the protective effect of dexmedetomidine against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats.

Methods

Sixty-four rats were assigned into four experimental groups: normoglycemia, normoglycemia + dexmedetomidine, hyperglycemia, and hyperglycemia + dexmedetomidine and all subsequent neurological examinations were evaluated by a blinded observer. Damage to the brain was histologically assessed using the TUNEL staining method while western blotting was used to investigate changes in the expression levels of apoptosis-related proteins as well as the microglia marker, ionized calcium-binding adapter molecule 1 (Iba1). Water content in the brain was also analyzed. In addition, hippocampal concentrations of malondialdehyde (MDA) and Nox2 (a member of the Nox family of NADPH oxidases), and the activity of superoxide dismutase and catalase were analyzed. Finally, changes in serum concentrations of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were detected.

Results

Results showed that diabetes increased brain water content, the number of apoptotic neurons, early neurological deficit scores, oxidative stress (MDA and Nox2) and inflammation (pro-inflammatory cytokines including TNF-α and IL-6) levels following transient global I/R injury, but that these symptoms were attenuated following administration of dexmedetomidine.

Conclusions

These findings suggest that dexmedetomidine can significantly alleviate damage resulting from I/R, and this mechanism may be related to a reduction in both oxidative stress and inflammation which is normally associated with I/R.  相似文献   

13.

Background

Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.

Hypothesis

We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.

Methods and Results

We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP.

Conclusion

Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates NAFLD-associated vascular dysfunction; effects that are mediated by activation of SIRT1 gene expression.  相似文献   

14.

Purpose

The aim of this study was to compare changes in total oxidative status (TOS), total antioxidative capacity (TAC) and the concentration of VitA, VitE, VitC, uric acid (UA), reduced (GSH) and oxidized glutathione (GSSG) in blood within 24 hours following anaerobic exercise (AnEx) among men and women.

Methods

10 women and 10 men performed a 20-second bicycle sprint (AnEx). Concentrations of oxidative stress indicators were measured before AnEx and 3, 15 and 30 minutes and 1 hour afterwards. UA, GSH and GSSH were also measured 24 hours after AnEx. Lactate and H+ concentrations were measured before and 3 minutes after AnEx.

Results

The increase in lactate and H+ concentrations following AnEx was similar in both sexes. Changes in the concentrations of all oxidative stress indicators were significant and did not differ between men and women. In both sexes, TOS, TAC, TOS/TAC and VitA and VitE concentrations were the highest 3 minutes, VitC concentration was the highest 30 minutes, and UA concentration was the highest 1 hour after AnEx. GSH concentration was significantly lower than the initial concentration from 15 minutes to 24 hour after AnEx. GSSG concentration was significantly higher, while the GSH/GSSG ratio was significantly lower than the initial values 1 hour and 24 hour after AnEx.

Conclusions

With similar changes in lactate and H+ concentrations, AnEx induces the same changes in TAC, TOS, TOS/TAC and non-enzymatic antioxidants of low molecular weight in men and women. Oxidative stress lasted at least 24 hours after AnEx.  相似文献   

15.

Background

Inflammation, endothelial activation and oxidative stress have been established as key events in the initiation and progression of atherosclerosis. High-density lipoprotein cholesterol (HDL-c) is protective against atherosclerosis and coronary heart disease, but its association with inflammation, endothelial activation and oxidative stress is not well established.

Objectives

(1) To compare the concentrations of biomarkers of inflammation, endothelial activation and oxidative stress in subjects with low HDL-c compared to normal HDL-c; (2) To examine the association and correlation between HDL-c and these biomarkers and (3) To determine whether HDL-c is an independent predictor of these biomarkers.

Methods

422 subjects (mean age±SD = 43.2±11.9years) of whom 207 had low HDL-c concentrations (HDL-c <1.0mmol/L and <1.3mmol/L for males and females respectively) and 215 normal controls (HDL-c ≥1.0 and ≥1.3mmol/L for males and females respectively) were recruited in this study. The groups were matched for age, gender, ethnicity, smoking status, diabetes mellitus and hypertension. Fasting blood samples were collected for analysis of biomarkers of inflammation [high-sensitivity C-reactive protein (hsCRP) and Interleukin-6 (IL-6)], endothelial activation [soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble Intercellular Adhesion Molecule-1 (sICAM-1) and E-selectin)] and oxidative stress [F2-Isoprostanes, oxidized Low Density Lipoprotein (ox-LDL) and Malondialdehyde (MDA)].

Results

Subjects with low HDL-c had greater concentrations of inflammation, endothelial activation and oxidative stress biomarkers compared to controls. There were negative correlations between HDL-c concentration and biomarkers of inflammation (IL-6, p = 0.02), endothelial activation (sVCAM-1 and E-selectin, p = 0.029 and 0.002, respectively), and oxidative stress (MDA and F2-isoprostane, p = 0.036 and <0.0001, respectively). Multiple linear regression analysis showed HDL-c as an independent predictor of IL-6 (p = 0.02) and sVCAM-1 (p<0.03) after correcting for various confounding factors.

Conclusion

Low serum HDL-c concentration is strongly correlated with enhanced status of inflammation, endothelial activation and oxidative stress. It is also an independent predictor for enhanced inflammation and endothelial activation, which are pivotal in the pathogenesis of atherosclerosis and atherosclerosis-related complications.  相似文献   

16.

Aim

To investigate the effects of rhubarb enema treatment using a 5/6 nephrectomized rat model and study its mechanisms.

Methods

Twenty-eight Sprague Dawley rats were divided into three groups: sham operation group (n = 8), 5/6 nephrectomized (5/6Nx) (n = 10), and 5/6Nx with rhubarb enema treatment (n = 10). The rhubarb enema was continuous for 1.0 month. Serum creatinine, serum indoxyl sulfate (IS) level, renal pathology, tubulointerstitial fibrosis, and renal oxidative stress were assessed.

Results

5/6Nx rats showed increasing levels of serum creatinine and severe pathological lesions. Their serum creatinine levels obviously decreased after rhubarb enema treatment (P < 0.05 vs 5/6Nx group). The administration of rhubarb enema attenuated the histopathological changes in 5/6Nx rats. In addition, 5/6Nx rats showed an enhanced extent of tubulointerstitial fibrosis compared with sham rats, and administration of rhubarb enema to 5/6Nx rats ameliorated tubulointerstitial fibrosis. 5/6Nx rats showed increased serum levels of IS, renal oxidative stress, and NF-κB compared with sham rats, whereas administration of rhubarb enema to 5/6Nx rats decreased serum levels of IS, renal oxidative stress, and NF-κB levels.

Conclusion

Rhubarb enema treatment ameliorates tubulointerstitial fibrosis in the kidneys of 5/6Nx rats, most likely by alleviating IS overload and reducing kidney oxidative stress and inflammatory injury.  相似文献   

17.

Background

Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA repair enzyme involved in both base excision repair (BER) and nucleotide incision repair (NIR) pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5′ to a number of oxidatively damaged bases. At present, physiological relevance of the NIR pathway is fairly well established in E. coli, but has yet to be elucidated in human cells.

Methodology/Principal Finding

We identified amino acid residues in the APE1 protein that affect its function in either the BER or NIR pathway. Biochemical characterization of APE1 carrying single K98A, R185A, D308A and double K98A/R185A amino acid substitutions revealed that all mutants exhibited greatly reduced NIR and 3′→5′ exonuclease activities, but were capable of performing BER functions to some extent. Expression of the APE1 mutants deficient in the NIR and exonuclease activities reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to an alkylating agent, methylmethanesulfonate, suggesting that our APE1 mutants are able to repair AP sites. Finally, the human NIR pathway was fully reconstituted in vitro using the purified APE1, human flap endonuclease 1, DNA polymerase β and DNA ligase I proteins, thus establishing the minimal set of proteins required for a functional NIR pathway in human cells.

Conclusion/Significance

Taken together, these data further substantiate the role of NIR as a distinct and separable function of APE1 that is essential for processing of potentially lethal oxidative DNA lesions.  相似文献   

18.

Purpose

This study investigated the effects of resistance exercise on the Akt-eNOS, the activation of antioxidant protein and FOXO1 in the aorta of F344 rats.

Methods

Male 7 week-old F344 rats were randomly divided into 2 groups: a climbing group (n = 6) and a sedentary group (n = 6). H&E staining and western blotting were used to analyze the rat aortas and target proteins.

Results

Resistance exercise training did not significantly affect aortic structure. Phosphorylation of AKT and eNOS and expression of MnSOD and Ref-1 were significantly increased while FOXO1 phosphorylation was significantly decreased in the resistance exercise group compared with the sedentary group.

Conclusion

We demonstrate that resistance exercise activates the Akt-eNOS and Ref-1 protein without changes to aortic thickness via FOXO-1 activation in the aorta of F344 rats.  相似文献   

19.
20.
Human APE/Ref-1 protein   总被引:13,自引:0,他引:13  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号