首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquatic Botany》2006,84(4):281-288
During the six month dry period in the intermittent lake Cerknica in 2003, fluorescence parameters in 14 amphibious plants were measured to estimate the possible disturbance to photosystem II. Environmental changes due to intermittence caused no evident irreversible damage, since the potential photochemical efficiency of the majority of species and forms remained close to the optimal value at 0.83. Actual photochemical efficiency varied, showing different levels of temporary stress. Sudden submergence of aerial forms caused little disturbance to PS II. The results revealed the acclimation of plants thriving in intermittent habitats that enabled continuous harvesting of solar energy.  相似文献   

2.
The response of sugar beet (Beta vulgaris L.) leaves to iron deficiency can be described as consisting of two phases. In the first phase, leaves may lose a large part of their chlorophyll while maintaining a roughly constant efficiency of photosystem II photochemistry; ratios of variable to maximum fluorescence decreased by only 6%, and photon yields of oxygen evolution decreased by 30% when chlorophyll decreased by 70%. In the second phase, when chlorophyll decreased below a threshold level, iron deficiency caused major decreases in the efficiency of photosystem II photochemistry and in the photon yield of oxygen evolution. These decreases in photosystem II photochemical efficiency were found both in plants dark-adapted for 30 minutes and in plants dark-adapted overnight, indicating that photochemical efficiency cannot be repaired in that time scale. Decreases in photosystem II photochemical efficiency and in the photon yield of oxygen evolution were similar when measurements were made (a) with light absorbed by carotenoids and chlorophylls and (b) with light absorbed only by chlorophylls. Leaves of iron-deficient plants exhibited a room temperature fluorescence induction curve with a characteristic intermediate peak I that increases with deficiency symptoms.  相似文献   

3.
4.
The mechanism of the fact that manganese deprivation and cerium addition affect the photochemical efficiency of plants is unclear. In this study, we investigated the improvement by cerium of the damage of the photochemical function of maize chloroplasts under manganese-deprived stress. Chlorophyll fluorescence induction measurements showed that the ratio of variable to maximum fluorescence (Fv/Fm) underwent great decreases under manganese deficiency, which was attributed to the reduction of intrinsic quantum efficiency of the photosystem II units. The electron flow between the two photosystems, activities of Mg2+–ATPase and Ca2+–ATPase, and rate of photophosphorylation on the thylakoid membrane of maize chloroplasts were reduced significantly by exposure to manganese deprivation. Furthermore, the inhibition of cyclic photophosphorylation was more severe than non-cyclic photophosphorylation under manganese deficiency. However, added cerium could relieve the inhibition of the photochemical reaction caused by manganese deprivation in maize chloroplasts. It implied that manganese deprivation could disturb photochemical reaction of chloroplasts strongly, which could be improved by cerium addition.  相似文献   

5.
A model is proposed for the organization of chlorophyll-protein complex in photosystem II (PS II) of higher plants. The rates of exciton migration and exciton trapping have been computed using stochastic method to find out the photochemical efficiency of the dimeric PS II. Three dimeric PS II units are assumed to form a group, as transfer of the exciton to the light harvesting bed of the nearest neighbour on either side may only be effective. A relationship has been deduced between the fractions of the reaction centre traps closed and the number of jumps (J) required by the exciton for trapping. The photochemical efficiency and fluorescence quantum yield are computed using J as the parameter in an empirical equation.  相似文献   

6.
Trehalose can reduce stomatal aperture by a hydrogen-peroxide-dependent pathway in Vicia faba L. (cv. Daqingpi) resulting in significantly lower values of net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E). At 8 and 24 h, the lower PN in trehalose-treated plants was accompanied by significant decrease in intercellular CO2 concentration (ci) suggesting that the reduction of PN was caused by stomatal limitation. At 48 and 72 h, trehalose decreased apparent carboxylation efficiency (PN/ci) and did not decrease ci and gs compared with controls; therefore the reduction in photosynthesis was caused by non-stomatal limitation. Trehalose treatment resulted in significantly higher effective photochemical efficiency of PS II (ΦPSII) and did not affect maximum photochemical efficiency of PS II (Fv/Fm). At 24, 48, and 72 h, trehalose decreased non-photochemical quenching (NPQ) and increased photochemical quenching (qP). Our results suggest that trehalose did not damage photosynthetic reaction centers.  相似文献   

7.
The irradiance dependence of the efficiencies of photosystems I and II were measured for two pea (Pisum sativum [L.]) varieties grown under cold conditions and one pea variety grown under warm conditions. The efficiencies of both photosystems declined with increasing irradiance for all plants, and the quantum efficiency of photosystem I electron transport was closely correlated with the quantum efficiency of photosystem II electron transport. In contrast to the consistent pattern shown by efficiency of the photosystems, the redox state of photosystem II (as estimated from the photochemical quenching coefficient of chlorophyll fluorescence) exhibited relationships with both irradiance and the reduction of P-700 that varied with growth environment and genotype. This variability is considered in the context of the modulation of photosystem II quantum efficiency by both photochemical and nonphotochemical quenching of excitation energy.  相似文献   

8.
Four-leaf rice seedlings (Oryza sativa L.), which had been cultivated in Kimura B complete nutrient solution, were treated with two nitrogen forms by replacing the nitrogen element in the complete solution with sole nitrate or ammonium (2.86 mmol/L). Nitrate-N nutrition tended to increase oxalate content in all parts of the plant, including the leaves, stems, roots, and root exudates, whereas ammonium had the opposite effect. Consequently, marked differences in oxalate content were observed between the two treatments throughout the time tested (0-12 d), with maximal differences of approximately 12-fold at 6d after treatment. Photosynthetic/respiratory parameters were examined over time simultaneously with changes in oxalate content. Net photosynthetic rate, chlorophyll fluorescence parameters (i.e. maximal photochemical efficiency (Fv/Fm) and photochemical quantum yields of photosystem (PS)II (ΦPSⅡ)), and respiratory rate were not significantly different between plants treated with the two nitrogen forms, although ammonium-fed plants had apparently higher leaf chlorophyll content than nitrate-fed plants. Leaf glucose content was altered little, but the content of fructose, sucrose, and total soluble sugar was significantly higher in the leaves of ammonium-fed plants than nitrate-fed plants. The results indicate that nitrate/ammonium may serve as efficient regulators of oxalate accumulation owing to regulation of metabolism in rice leaves rather than oxalate downward transfer and root excretion, and that photosynthetic metabolism is not directly correlated with the regulation of oxalate accumulation in rice plants.  相似文献   

9.
外源ATP对NaCl胁迫下菜豆叶片叶绿素荧光特性的调节   总被引:1,自引:0,他引:1  
盐胁迫是影响植物生长的主要逆境因子之一,外源ATP被发现可作为信号分子参与植物对逆境胁迫生理反应的调节。为了探明外源ATP在植物盐胁迫响应中的作用,以增强植物对土壤盐渍化的耐性,更好地应用于土壤盐渍化修复。该研究以菜豆( Phaseolus vulgaris)为材料,通过叶绿素荧光技术探讨了外源ATP 对菜豆叶片在NaCl胁迫下叶绿素荧光特性的变化规律。结果表明:在NaCl胁迫下,叶片光系统Ⅱ( PSⅡ)潜在最大光化学量子效率( Fv/Fm)、光适应下最大光化学效率( Fv′/Fm′)、PSⅡ光适应下实际光化学效率[ Y (Ⅱ)]、光化学荧光猝灭( qP)、电子传递速率( ETR)与对照组相比均有显著性下降,而非光化学猝灭( NPQ)和( qN)较对照组有显著性增加,这表明NaCl胁迫导致菜豆叶片光系统Ⅱ光化学效率的下降和光能耗散的增加。而外源ATP(eATP)的处理能有效缓解NaCl胁迫所造成的Fv/Fm、Fv′/Fm′、Y(Ⅱ)、qP、ETR下降和NPQ、qN的上升。该研究结果表明在NaCl胁迫下外源ATP可以有效地提高菜豆幼苗光系统Ⅱ( PSⅡ)的光化学反应效率。  相似文献   

10.
The possible mechanism(s) by which supplemental UV-B radiation alleviates the adverse effects of summer drought in Mediterranean pines (Petropoulou et al. 1995) were investigated with seedlings of Pinus pinea. Plants received ambient or ambient plus supplemental UV-B radiation (biologically equivalent to a 15% ozone depletion over Patras, 38.3° N, 29.1° E) and natural precipitation or additional irrigation. Treatments started on 1 February, 1994 and lasted up to the end of the dry period (29 September). In well-watered plants, UV-B radiation had no influence on photosystem II photochemical efficiency and biomass accumulation. Water stressed plants suffered from needle loss and reduced photosystem II photochemical efficiency during the summer. These symptoms, however, were less pronounced in plants receiving supplemental UV-B radiation, resulting in higher total biomass at plant harvest. Laboratory tests showed that enhanced UV-B radiation did not improve the tolerance of photosystem II against drought, high light, high temperature and oxidative stress. Enhanced UV-B radiation, however, improved the water economy of water stressed plants, as judged by measurements of needle relative water content. In addition, it caused an almost two-fold increase of cuticle thickness. No such UV-B radiation effects were observed in well-watered pines. The results indicate that the combination of water stress and UV-B radiation may trigger specific responses, enabling the plants to avoid excessive water loss and, thereby, maintain a more efficient photosynthetic apparatus during the summer. The extent of this apparently positive UV-B radiation effect would depend on the amount of summer precipitation. Abbreviations: DW – dry weight, Fv/Fm – ratio of variable to maximum fluorescence, A 300 – absorbance at 300 nm, PAR – photosynthetically active radiation, PS II – photosystem II, RWC – relative water content, TCA – trichloroacetic acid, UV-BBE – biologically effective ultraviolet-B radiation  相似文献   

11.
In this study the effect of increasing temperature on photochemical efficiency of PS II in wheat plants has been studied on a hot summer day (9:00 AM (Control)–7:00 PM) by measuring Chl a fluorescence. Increasing temperature for a short period of time (2–4 h), in nature affects the efficiency of PS II complex reversibly and does not cause permanent damage to any of the components of photosystem II. A scheme has been provided to demonstrate the sequence and severity of events which get affected maximum by temperature stress.  相似文献   

12.
The objective of this study was to identify the effects of exogenous putrescine on photosynthetic performance and heat dissipation capacity in cucumber seedlings under salt stress. The stress of 75 mM NaCl for 7 days caused a significant decrease in net photosynthetic rate (P N ). The experiment employed a chlorophyll fluorescence imaging technique and demonstrated that the maximal quantum yield of photosystem II photochemistry (Fv/Fm) and the actual photochemical efficiency of photosystem II (ΦPSII) were reduced by salt stress. Moreover, salt stress markedly reduced the photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qN), and significantly increased non-regulated heat dissipation (ΦNO). However, stressed plants supplied with exogenous putrescine exhibited higher P N and ΦPSII, which indicated that putrescine can alleviate the detrimental effects on photosynthesis induced by salt stress. Putrescine sprayed on stressed plants significantly enhanced the regulated energy dissipation (ΦNPQ) and decreased ΦNO. Application of exogenous putrescine also changed the levels of xanthophyll cycle components and further enhanced the de-epoxidation state of xanthophyll cycle pigments under salt stress. Under control conditions, putrescine exerted little influence on the photosynthetic parameters in cucumber leaves. In conclusion, the application of exogenous putrescine may improve the heat dissipation capacity by promoting the xanthophyll cycle to reduce the damage caused by excess excitation energy, thus enhancing the salt tolerance of cucumber seedlings.  相似文献   

13.
缺铁对大豆叶片光合作用和光系统Ⅱ功能的影响   总被引:2,自引:0,他引:2  
通过气体交换和叶绿素荧光测定研究了缺铁对大豆叶片碳同化和光系统Ⅱ的影响。缺铁条件下大豆光合速率(Pn)大幅下降;最大光化学效率(po)下降幅度较小;荧光诱导动力学曲线发生明显的变化,其中电子传递活性明显下降,K相(VK)相对荧光产量提高。缺铁大豆的天线转化效率(Fv'/Fm')、光化学猝灭系数(qP)和光系统Ⅱ实际光化学效率(ΦPSⅡ)降低,而非光化学猝灭(NPQ)则明显增加。此外,缺铁大豆的光后荧光上升增强。据此,认为铁缺乏伤害了光系统Ⅱ复合物供体侧和受体侧的电子传递;缺铁条件下光系统I环式电子传递的增强可能在维持激发能耗散和ATP供给方面起一定作用。  相似文献   

14.
The effects of exogenous application of glycinebetaine (GB) (10 m M ) on growth, leaf water content, water use efficiency, photosynthetic gas exchange, and photosystem II photochemistry were investigated in maize plants subjected to salt stress (50 and 100 m M NaCl). Salt stress resulted in the decrease in growth and leaf relative water content as well as net photosynthesis and the apparent quantum yield of photosynthesis. Stomatal conductance, evaporation rate, and water use efficiency were decreased in salt-stressed plants. Salt stress also caused a decrease in the actual efficiency of PSII ( Φ PSII), the efficiency of excitation energy capture by open PSII reaction centers ( F v'/ F m'), and the coefficients of photochemical quenching ( q P) but caused an increase in non-photochemical quenching (NPQ). Salt stress showed no effects on the maximal efficiency of PSII photochemistry ( F v/ F m). On the other hand, in salt-stressed plants, GB application improved growth, leaf water content, net photosynthesis, and the apparent quantum yield of photosynthesis. GB application also increased stomatal conductance, leaf evaporation rate, and water use efficiency. In addition, GB application increased Φ PSII, F v'/ F m', and q P but decreased NPQ. However, GB application showed no effects on F v/ F m. These results suggest that photosynthesis was improved by GB application in salt-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the actual PSII efficiency.  相似文献   

15.
揭示玉米(Zea mays)和花生(Arachis hypogaea)间作提高花生对弱光利用能力的光合特点及磷(P)肥效应, 对阐明间作花生适应弱光的光合机理和提高间作花生的产量具有重要意义。该试验于2011-2012年在河南科技大学试验农场分析了间作花生功能叶的叶绿素含量与构成、光响应曲线和CO2响应曲线特点和荧光参数。结果表明: 与单作花生相比, 施P与不施P条件下玉米和花生间作显著(p < 0.01)提高了花生功能叶的叶绿素b含量, 降低了叶绿素a/b, 显著提高了光系统II最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)、光化学猝灭系数(qP)、表观量子效率(AQY)和弱光时的光合速率, 显著降低了气孔导度、二磷酸核酮糖羧化酶羧化速率(Vcmax)、电子传递速率(Jmax)和磷酸丙糖利用速率(TPU); 与不施P相比, 施P有利于提高间作花生功能叶的叶绿素含量, 显著提高了ΦPSIIqPVcmaxJmaxTPU, 说明间作花生通过提高功能叶的叶绿素b含量, 改变叶绿素构成, 提高了光系统II的Fv/FmΦPSIIqP, 增强了对光能的捕获和转化能力, 提高了对弱光的利用能力, 而并非提高了对CO2的羧化固定能力; 施P有利于提高间作花生对弱光的利用能力和产量, 土地当量比提高了6.2%-9.3%。  相似文献   

16.
Rhododendron delavayi is an alpine evergreen ornamental plant with strong tolerance to drought stress. Brassinosteroids are promising agents for alleviating the negative effects of drought on plants, but the mechanism by which BRs induce plant resistance to drought is not well understood. The present study investigated the effects of exogenous spray of 24-epibrassionlide (EBR) at different concentrations (0~1 mg l−1) on the physiological response of R. delavayi to drought caused by no watering for 10 days. With the increase in EBR concentration, net photosynthetic rate, stomatal conductance, transportation rate, light saturated photosynthetic rate, light compensation point, light saturation point, excitation energy capture efficiency of reaction center, actual photochemical efficiency of photosystem II (PSII), photochemical quenching and electron transport rate significantly increased, but there were no significant effects on photosynthetic pigment content. These results suggested that the EBR-induced improvement in CO2 assimilation under drought was mainly related to stomatal and non-stomatal factors, and partially attributed to the increased photochemical efficiency of PSII. In addition, the leaf water potential increased with the increase in EBR concentration, while the malondialdehyde, superoxide dismutase, catalase, proline and soluble protein decreased. The results suggested EBR application partially alleviated the negative effect of drought on R. delavayi by improving water relations and decreasing lipid peroxidation and reactive oxygen species production. We concluded that exogenous application of EBR improved photosynthesis and alleviated the negative effects of drought-induced membrane peroxidation and severe oxidative stress.  相似文献   

17.
Ear photosynthesis may be an important source of C for grain growth in water-stressed plants of cereals. The main objectives of this work were to determine the stability of the photosynthetic apparatus and the photochemical efficiency of ears in plants subjected to post-anthesis drought. Plants of wheat ( Triticum aestivum L. cv. Granero INTA) were grown in pots under a rain shelter and subjected to water stress (soil water potential around −0.6 to −0.8 MPa) starting 4  days after anthesis. Post-anthesis drought substantially accelerated the loss of chlorophyll, Rubisco and the light-harvesting complex of photosystem II (LHCII) in the flag leaf, but the degradation of these photosynthetic components was much less affected by water deficit in awns and ear bracts. Quantum yield of PSII (ΦPSII) decreased in leaves of water-stressed plants. In contrast, ear bracts had a higher ΦPSII than leaves, and ΦPSII of ear bracts did not decrease at all in response to drought. Removing the grains immediately before fluorescence measurements (less than 30 min) slightly reduced ΦPSII, indicating that CO2 supplied by grain respiration may contribute to the high photochemical efficiency of ears in droughted plants. However, other factors may be involved in maintaining high ΦPSII, since even in the absence of grains ΦPSII remained much higher in ear bracts than in the flag leaf. The relative stability of ear photosynthetic components and their relatively high photochemical efficiency may help to maintain ear photosynthesis during the grain filling period in droughted plants.  相似文献   

18.
The biochemical mechanisms underlying the involvement of cytosolic ascorbate peroxidases (cAPXs) in photosynthesis are still unknown. In this study, rice plants doubly silenced in these genes (APX1/2) were exposed to moderate light (ML) and high light (HL) to assess the role of cAPXs in photosynthetic efficiency. APX1/2 mutants that were exposed to ML overexpressed seven and five proteins involved in photochemical activity and photorespiration, respectively. These plants also increased the pheophytin and chlorophyll levels, but the amount of five proteins that are important for Calvin cycle did not change. These responses in mutants were associated with Rubisco carboxylation rate, photosystem II (PSII) activity and potential photosynthesis, which were similar to non‐transformed plants. The upregulation of photochemical proteins may be part of a compensatory mechanism for APX1/2 deficiency but apparently the finer‐control for photosynthesis efficiency is dependent on Calvin cycle proteins. Conversely, under HL the mutants employed a different strategy, triggering downregulation of proteins related to photochemical activity, Calvin cycle and decreasing the levels of photosynthetic pigments. These changes were associated to strong impairment in PSII activity and Rubisco carboxylation. The upregulation of some photorespiratory proteins was maintained under that stressful condition and this response may have contributed to photoprotection in rice plants deficient in cAPXs. The data reveal that the two cAPXs are not essential for photosynthesis in rice or, alternatively, the deficient plants are able to trigger compensatory mechanisms to photosynthetic acclimation under ML and HL conditions. These mechanisms involve differential regulation in protein expression related to photochemistry, Calvin cycle and photorespiration.  相似文献   

19.
The impact of Blissus occiduus Barber feeding on resistant ('Prestige') and susceptible ('378') buffalograsses, Buchlo? dactyloides (Nuttall) Engelmann, was evaluated through measurement of carbon exchange rate, light and carbon assimilation (A-C(i)) curves, chlorophyll a fluorescence, and nonstructural carbohydrates. No significant differences in carbon exchange rates were observed between infested and control plants for 378 at 5 and 10 d after infestation; however, at 20 d after chinch bug introduction, significant differences in carbon exchange rates between infested and control 378 plants were detected. Carbon exchange rates were similar between infested and control Prestige plants at 5,10, and 20 d after infestation, suggesting that resistant plants can allocate energy for recovery from chinch bug injury. Significant differences in the photochemical efficiency of photosystem II (PSII) and the apparent photosynthetic electron transport ratio were observed between infested and control 378 plants, whereas, no significant differences in the photochemical efficiency of PSII and the electron transport ratio were detected between control and infested Prestige plants. Blissus occiduus-infested 378 and Prestige plants consistently had similar or higher levels of nonstructural carbohydrates compared with their respective control plants. These data suggest that both resistant and susceptible buffalograsses increase levels of nonstructural carbohydrates in response to B. occiduus feeding. This research also suggests compensatory photosynthesis takes place in Prestige but not in 378.  相似文献   

20.
Rubisco activase (RCA) is an important enzyme that can catalyze the carboxylation and oxygenation activities of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), which is involved in the photosynthetic carbon reduction cycle. Here, we studied the effects of changes in RCA activity on photosynthesis, growth and development, as well as the low temperature and weak light tolerance of RCA overexpressing transgenic cucumber (Cucumis sativus) plants. CsRCA overexpression increased the plant height, leaf area and dry matter, and decreased the root/top ratio in transgenic cucumber plants compared with the wild‐type (WT) plants. Low temperature and low light stress led to decreases in the CsRCA expression and protein levels, the photosynthetic rate (Pn) and the stomatal conductance (Gs), but an increase in the intercellular CO2 (Ci) concentration in cucumber leaves. The actual photochemical efficiency and maximal photochemical efficiency of photosystem II in cucumber seedlings also declined, but the initial fluorescence increased during low temperature and weak light stress. Transgenic plants showed a lower decrease in the CsRCA expression level and actual and maximal photochemical efficiencies, as well as increases in the Ci and initial fluorescence relative to the WT plants. Low temperature and low light stress resulted in a significant increase in the malondialdehyde (MDA) content; however, this increase was reduced in transgenic plants compared with that in WT plants. Thus, the overexpression of CsRCA may promote the growth and low temperature and low light tolerance of cucumber plants in solar greenhouses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号