首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inastrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl]i and a decrease in [Na+]i were observed.Inneurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. Inastrocytes, pHi increased when [K+]o was increased. Inneurons, there was a biphasic change in pHi. In lower [K+]o (1.2–2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8–122 mM) pHi was directly related to [K+]o. In bothastrocytes andneurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons. Results of this study demonstrate that alteration of [K+]o produced different changes in [K+]i, [Na+]i, [Cl]i, and pHi in astrocytes and neurons. The data show that astrocytes can adapt to alterations in [K+]o, in such a way to maintain a more suitable environment for neurons.  相似文献   

2.
In ovarian follicles of Drosophila melanogaster, ion substitution experiments revealed that K+ is the greatest contributor (68%) in setting oocyte steady‐state potential (Em), while Mg2+ and a metabolic component account for the rest. Because of the intense use made of Drosophila ovarian follicles in many lines of research, it is important to know how changes in the surrounding medium, particularly in major diffusible ions, may affect the physiology of the cells. The contributions made to the Drosophila oocyte membrane potential (Em) by [Na+]o, [K+]o, [Mg2+]o, [Ca2+]o, [Cl?]o, and pH (protons) were determined by substitutions made to the composition of the incubation medium. Only K+ and Mg2+ were found to participate in setting the level of Em. In follicles subjected to changes in external pH from the normal 7.3 to either pH 6 or pH 8, Em changed rapidly by about 6 mV, but within 8 min had returned to the original Em. Approximately half of all follicles exposed to reduced [Cl?]o showed no change in Em, and these all had input resistances of 330 kΩ or greater. The remaining follicles had smaller input resistances, and these first depolarized by about 5 mV. Over several minutes, their input resistances increased and they repolarized to a value more electronegative than their value prior to reduction in [Cl?]o. Together, K+ and Mg2+ accounted for up to 87% of measured steady‐state potential. Treatment with sodium azide, ammonium vanadate, or chilling revealed a metabolically driven component that could account for the remaining 13%. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Internal chloride activity, ai Cl, and membrane potential, Em, were measured simultaneously in 120 R2 giant neurons of Aplysia californica. ai Cl was 37.0 ± 0.8 mM, Em was -49.3 ± 0.4 mv, and E Cl calculated using the Nernst equation was -56.2 ± 0.5 mv. Such values were maintained for as long as 6 hr of continuous recording in untreated neurons. Cooling to 1°–4°C caused ai Cl to increase at such a rate that 30–80 min after cooling began, E Cl equalled Em. The two then remained equal for as long as 6 hr. Rewarming to 20°C caused ai Cl to decline, and E Cl became more negative than Em once again. Exposure to 100 mM K+-artificial seawater caused a rapid increase of ai Cl. Upon return to control seawater, ai Cl declined despite an unfavorable electrochemical gradient and returned to its control values. Therefore, we conclude that chloride is actively transported out of this neuron. The effects of ouabain and 2,4-dinitrophenol were consistent with a partial inhibitory effect. Chloride permeability calculated from net chloride flux using the constant field equation ranged from 4.0 to 36 x 10-8 cm/sec.  相似文献   

4.
Summary Recently we proposed that cytoplasmic acidification of low K+ (LK) sheep erythrocytes may stimulate ouabain-resistant Cl-dependent K+ flux (K+Cl cotransport), also known to be activated by cell swelling, treatment with N-ethylmaleimide (NEM), or removal of cellular bivalent cations. Here we studied the dependence of K+ transport on intracellular and extracellular pH (pH i , pH o ) varied either simultaneously or independently using the Cl/HCO 3 exchange inhibitor 4,4, diisothiocyanatostilbene-3,2-disulfonic acid (DIDS). In both control and NEM-treated LK cells volumes were kept near normal by varying extracellular sucrose. Using DIDS as an effective pH clamp, both K+ efflux and influx of Rb+ used as K+ congener were strongly activated at acid pH i and alkaline pH o . A small stimulation of K+ (Rb+) flux was also seen at acid pH i in the absence of DIDS, i.e., when pH i pH o . Anti-L l serum, known to inhibit K+Cl cotransport, prevented the pH i -stimulated K+ (Rb+) fluxes. Subsequent to NEM treatment at pH 6, K+ (Rb+) fluxes were activated only by raising pH, and thus were similar to the pH activation profile of K+ (Rb+) fluxes in DIDS-treated cells with pH o varied at constant physiologic pH i . Anti-L l , which inhibited NEM-stimulated K+ (Rb+) fluxes, failed to do so in NEM-plus DIDS-treated cells. Thus, NEM treatment interferes with the internal but not with the external pH-sensitive site.  相似文献   

5.
+ concentration ([K+]o) on the membrane potential (Em) of Chara corallina was studied. Em more negative than -100 mV was maintained even at 100 mM [K+]o. Addition of Ca2+ to the external medium further increased this tendency. However, Em responded sensitively to the increase in [K+]o, when the electrogenic proton pump of the plasma membrane was inhibited by treating cells with dicyclohexylcarbodiimide, an inhibitor of proton pump. Analysis using equivalent circuit model of the plasma membrane suggested that the electrogenic proton pump was activated by the increase in [K+]o. In the presence of 100 mM K+, action potentials were generated by electric stimuli. The ionic mechanism of generation of action potentials in the presence of K+ at high concentration was discussed. Received 3 October 2000/ Accepted in revised form 6 January 2001  相似文献   

6.
Voltage clamp fluorometry was used to monitor conformational changes associated with electrogenic partial reactions of the Na+,K+-ATPase after changes in the concentration of internal sodium (Na+i) or external potassium (K+o). To probe the effects of the Na+i concentration on the Na+ branch of the Na+,K+-ATPase, oocytes were depleted of Na+i and then loaded with external sodium (Na+o) using the amiloride-sensitive epithelial sodium channel. The K+ branch of the Na+,K+-ATPase was studied by exposing the oocytes to different K+o concentrations in the presence and absence of Na+o to obtain additional information on the apparent affinity for K+o. Our results demonstrate that lowering the concentration of Na+i or increasing the amount of K+o in the external solution shifts the equilibrium toward E1/E1P. Furthermore, the K+o-induced relocation toward E1 occurs at a much lower K+o concentration when Na+o is absent, indicating a higher apparent affinity. Finally, voltage-dependent steps associated with the K+ branch or the Na+ branch of the Na+,K+-ATPase are affected by the K+o concentration or the Na+i concentration, respectively.  相似文献   

7.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

8.
The Membrane Potential of Acetabularia mediterranea   总被引:8,自引:1,他引:7  
The cytoplasm of an Acetabularia cell is normally at a potential of about -170 mv relative to the external solution; the vacuole is also at this potential. Although there is strict flux equilibrium for all ions, the potential is more negative than the Nernst potentials of any of the permeating ions. Darkness, CCCP, low temperature, and reducing [Cl-]o by a factor of 25 all rapidly depolarize the membrane and inhibit Cl- influx. Some of these treatments do not inhibit the effluxes of K+ and Na+. Increasing [K+]o also depolarizes the membrane both under normal conditions and at low temperature; in the latter case the membrane is partially depolarized in normal seawater (low [K+]o) and in high [K+]o positive potentials of up to +15 mv are attained. It is concluded that the membrane potential is controlled by the electrogenic influx of Cl-, and also, at least in some circumstances, by the diffusion of K+. In addition, it is suggested that electrogenic efflux of H+ may be important in transient nonequilibrium situations. An Appendix deals with the interpretation of simple nonsteady-state tracer kinetic data.  相似文献   

9.
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3–10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.  相似文献   

10.
Changes in membrane properties of chick embryonic hearts during development   总被引:13,自引:3,他引:10  
The electrophysiological properties of embryonic chick hearts (ventricles) change during development; the largest changes occur between days 2 and 8. Resting potential (Em) and peak overshoot potential (+E max) increase, respectively, from -35 mv and +11 mv at day 2 to -70 mv and +28 mv at days 12–21. Action potential duration does not change significantly. Maximum rate of rise of the action potential (+V max) increases from about 20 v/sec at days 2–3 to 150 v/sec at days 18–21; + V max of young cells is not greatly increased by applied hyperpolarizing current pulses. In resting Em vs. log [K+]o curves, the slope at high K+ is lower in young hearts (e.g. 30 mv/decade) than the 50–60 mv/decade obtained in old hearts, but the extrapolated [K+]i values (125–140 mM) are almost as high. Input resistance is much higher in young hearts (13 MΩ at day 2 vs. 4.5 MΩ at days 8–21), suggesting that the membrane resistivity (Rm) is higher. The ratio of permeabilities, P Na/P K, is high (about 0.2) in young hearts, due to a low P K, and decreases during ontogeny (to about 0.05). The low K+ conductance (g K) in young hearts accounts for the greater incidence of hyperpolarizing afterpotentials and pacemaker potentials, the lower sensitivity (with respect to loss of excitability) to elevation of [K+]o, and the higher chronaxie. Acetylcholine does not increase g K of young or old ventricular cells. The increase in (Na+, K+)-adenosine triphosphatase (ATPase) activity during development tends to compensate for the increase in g K. +E max and + V max are dependent on [Na+]o in both young and old hearts. However, the Na+ channels in young hearts (2–4 days) are slow, tetrodotoxin (TTX)-insensitive, and activated-inactivated at lower Em. In contrast, the Na+ channels of cells in older hearts (> 8 days) are fast and TTX-sensitive, but they revert back to slow channels when placed in culture.  相似文献   

11.
The Influence of H+ on the Membrane Potential and Ion Fluxes of Nitella   总被引:23,自引:4,他引:19  
The resting membrane potential of the Nitella cell is relatively insensitive to [K]o, but behaves like a hydrogen electrode. K+ and Cl- effluxes from the cell were measured continuously, while the membrane potential was changed either by means of a negative feedback circuit or by external pH changes. The experiments indicate that PK and PCl are independent of pH but are a function of membrane potential. Slope ion conductances, GK, GCl, and GNa were calculated from efflux measurements, and their sum was found to be negligible compared to membrane conductance. The possibility that a boundary potential change might be responsible for the membrane potential change was considered but was ruled out by the fact that the peak of the action potential remained at a constant level regardless of pH changes in the external solution. The conductance for H+ was estimated by measuring the membrane current change during an external pH change while the membrane potential was clamped at K+ equilibrium potential. In the range of external pH 5 to 6, H+ chord conductance was substantially equal to the membrane conductance. However, the [H]i measured by various methods was not such as would be predicted from the [H]o and the membrane potential using the Nernst equation. In artificial pond water containing DNP, the resting membrane potential decreased; this suggested that some energy-consuming mechanism maintains the membrane potential at the resting level. It is probable that there is a H+ extrusion mechanism in the Nitella cell, because the potential difference between the resting potential and the H+ equilibrium potential is always maintained notwithstanding a continuous H+ inward current which should result from the potential difference.  相似文献   

12.
The apical membrane of intestinal epithelia expresses intermediate conductance K+ channel (KCNN4), which provides the driving force for Cl secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl secretion via stimulation of Rap2-phospholipase Cϵ-[Ca2+]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl secretion and apical K+ conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2′-O- methyladenosine 3′,5′-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K+ channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.  相似文献   

13.
Extracellular potassium concentration, [K+]o, and intracellular calcium, [Ca2+]i, rise during neuron excitation, seizures and spreading depression. Astrocytes probably restrain the rise of K+ in a way that is only partly understood. To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. Increase of [K+]o stimulated the glial uptake by the glial 3Na/2K ion pump. The [K+]o flux through glial leak and rectifier channels was outward as long as the driving potential was outwardly directed, but it turned inward when rising [K+]o/[K+]i ratio reversed the driving potential. Adjustments of glial membrane parameters influenced the neuronal firing patterns, the length of paroxysmal afterdischarge and the ignition point of spreading depression. We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states.  相似文献   

14.
Electropotential differences between the cytoplasm and external medium have been compared in the mature R. pipiens occyte and the ovulated unfertilized egg as a function of [Na]o, [K]o, [Ca]o and [Cl]o. In solutions containing 1.0 mM Ca++ the oocyte behaved as though it were predominantly permeable to K+ and Cl?, i.e., like a KCl electrode. However, the steady potential decreased with decreasing [Ca]o and in 5 × 10?4 mM [Ca]o the oocyte membrane behaved like a NaCl electrode. Studies on the steady potential as a function of [Na]o, [K]o and [Cl]o in 1.0 mM Ca++ or Ca-free solutions suggest that Ca++ controls the passive permeability of the oocyte membrane to Na+ and Cl?. In the ovulated unfertilized egg the K+ selectivity of the cell membrane disappeared and the system behaved like a NaCl electrode. No effect of external Ca++ or K+ concentration changes on the steady potential was observed. These results indicate that the ion permeability properties of the ovulated egg are similar to that of the ovarian oocyte in Ca-deficient medium, and suggests that the mechanism of ovulation may involve the removal of Ca++ regulation of ion permeability of the egg cell membrane.  相似文献   

15.
Summary After swelling in hyposmotic solution, Ehrlich ascites tumor cells shrink towards their original volume. Upon restoration of isosmolality (300 mOsm) the cells initially shrink but subsequently recover volume. This regulatory volume increase (RVI) is completely blocked when [Na+] o or [Cl] o is reduced by 50% in the presence of normal [K+] o . With normal [NaCl] o but less than 2 mm [K+] o , not only is volume recovery blocked but the cells lose KCl and shrink. When [K+] o is increased to 5 mm there is a rapid net uptake of K+ and Cl which results in volume recovery. This suggests that the reswelling phase requires the simultaneous presence of Na+, K+, and Cl. Although ouabain has no effect on volume recovery, bumetanide completely blocks RVI by inhibiting a cotransport pathway that mediates the net uptake of Na+, K+ and Cl in the ratio of 1Na1K2Cl. Na+ that accumulates is then replaced by K+ via the Na/K pump.I wish to thank my colleague, Dr. Thomas C. Smith for advice and helpful comments during the course of these studies. The excellent technical assistance provided by Rebecca Corcoran-Merrill is gratefully acknowledged.This investigation was supported by Grant CA 32927 from the National Cancer Institute, U.S. Public Health Service.  相似文献   

16.
Primary cultures of both mouse astrocytes and neurons accumulate more125I than36Cl from the medium. The average cell/medium ratio of125I of astrocytes (1.01) is greater than that of neurons (0.74), whereas the ratio of36Cl of neurons (0.47) is greater than that of astrocytes (0.25). The equilibrium potentials of both125I and36Cl calculated from the cell/medium ratios in astrocytes and neurons are significantly lower than their corresponding resting transmembrane potentials which suggest that both iodide and chloride are actively transported into both cell types. With respect to different transport inhibitors, thiocyanate is more effective in inhibiting125I uptake whereas furosemide is more effective in inhibiting36Cl uptake. Radioiodide uptake by mouse astrocytes was directly proportional to the [Na+]o but was not significantly affected by changes of [Cl]o or [HCO 3 ]o, except that it is low in bicarbonate-free medium. Radiochloride uptake by astrocytes was inversely related to [Cl]o and [HCO 3 ]o and was not affected [Na+]o, except that it was low in sodium-free medium. Radioiodide uptake by neurons was directly related to [Na+]o between 60 and 140 mM and inversely related to [HCO 3 ]o between 10 and 40 mM, but it was not affected by [Cl]o. Radiochloride uptake by neurons was directly related to [Cl]o and to [Na+]o between 60 and 140 mM and was not affected by [HCO 3 ]o. However, in sodium-free medium both125I and36Cl uptakes into neurons were higher than those in [Na+]o between 5 and 60 mM. These results indicate that uptake of125I and36Cl into astrocytes and neurons are different in their ion dependence and that they are under separate regulation.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

17.
Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the doseand time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of 86Rb+ influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.  相似文献   

18.
A major aim of this investigation was to determine whether, in steady-state ascites cells, Cl? transport can be partitioned into a furosemide-sensitive cotransport with K+ and a separate 4,4′-isothiocyanostilbene-2,2′-disulfonic acid (DIDS) sensitive self-exchange. Both Cl? and K+ fluxes were studied. The furosemide- and Cl? sensitive K+ fluxes were equivalent, both in normal ionic media and when the external K+ concentration, [K+]o, was varied from 4 to 30 mM. The stoichiometry of the furosemide-sensitive Cl? and K+ fluxes was 2 Cl?: 1 K+ at 0.1 and 0.5 mM drug levels but increased to 3 Cl? : 1 K+ at 1.0 mM furosemide. DIDS at 0.1 mM had no effect on the K+ exchange rate but inhibited Cl? exchange by 39% ± 2 (S.E.). The effects of DIDS and 0.5 mM furosemide on Cl? transport were additive but 1.0 mM furosemide and DIDS had overlapping inhibitory actions. Thus furosemide acts on components of K+ and Cl? transport which are linked to each other, but the drug also inhibits an additional DIDS-sensitive Cl? pathway, when present at higher concentrations. The dependence of the furosemide-sensitive K+ and Cl? transport on [K+]o was also studied; both fluxes fell as the [K+]o increased. The latter results recall those in an earlier study by Hempling (Hempling, H.G. (1962) J. Cell. Comp. Physiol. 60, 181–198).  相似文献   

19.
Abstract: Effects of nigericin were investigated in rat brain synaptosomes, cultured neurons, and C6 glioma cells to characterize the relations among ATP synthesis, [Na+]i., [K+]i, and [Ca2+]i, and pH under conditions when [H+]i is substantially increased and transmembrane electrical potential is decreased. Intracellular acidification and loss of K+ were accompanied by enhanced oxygen consumption and lactate production and a decrease in cellular energy level. Changes in the last three parameters were attenuated by addition of 1 mM ouabain. In synaptosomes treated with nigericin, neither respiration nor glycolysis was affected by 0.3 μM tetrodotoxin, whereas 1 mM amiloride reduced lactate production by 20% but did not influence respiration. In C6 cells, amiloride decreased the nigericin-stimulated rate of lactate generation by about 50%. The enhancement by nigericin of synaptosomal oxygen uptake and glycolytic rate decreased with time. However, there was only a small reduction in respiration and none in glycolysis in C6 cells. Measurements with ion-selective microelectrodes in neurons and C6 cells showed that nigericin also caused a rise in [Ca2+], and [Na+]., The increase in [Na+], in C6 cells was partially reversed by 1 mM amiloride. It is concluded that nigericin-induced loss of K+ and subsequent depolarization lead to an increase in Na+ influx and stimulation of the Na+/K+ pump with a consequent rise in energy utilization; that acidosis inhibits mitochondrial ATP production; that a rise in [H+] does not decrease glycolytic rate when the energy state (a fall in [ATP] and rises in [ADP] and [AMP]) is simultaneously reduced; that a fall in [K+], depresses both oxidative phosphorylation and glycolysis; and that the nigericin-induced alterations in ion levels and activities of energy-producing pathways can explain some of the deleterious effects of ischemia and hypoxia.  相似文献   

20.
In whole-cell recording, the conductance of the plasma membrane of protoplasts isolated from mesophyll cells of leaves of oat (Avena sativa) was greater for inward than outward current. The inward current in both the whole-cell mode and with isolated patches was dependent on [K+]o. When the membrane voltage was more positive than −50 millivolts, the membrane conductance in the whole-cell mode was low, and K+ channels in cell-attached or outside-out patches had a low probability of being open. At a membrane voltage more negative than −50 millivolts, the membrane conductance increased by sevenfold in the whole-cell mode, and the probability of the channels being open increased. The inward current was highly selective for K+ compared with Cs+, Na+, choline or Cl. Low concentrations of [Cs+]o or [Na+]o blocked the inward current in a strongly voltage-dependent fashion. Comparison of single-channel with the macroscopic current yields an estimate of about 200 inwardly rectifying K+ channels per cell at a density of 0.035 per square micrometer. At physiological membrane voltages and [K+]o about 10 millimolar, the influx through these channels is sufficient to increase the internal [K+] by 2 millimolar per minute. These K+ channels are activated by membrane voltages in the normal physiological range and could contribute to K+ uptake whenever the membrane is more negative than the K+ equilibrium potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号