首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The influence of membrane cholesterol on the activities of acyl-CoA: cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl-CoA reductase was examined in three microsomal subfractions (RNA-rich, RNA-poor, and smooth) that had been enriched with cholesterol by incubation with mixed lipoproteins from hypercholesterolemic rabbit serum. Acyl-CoA: cholesterol acyltransferase activity was significantly stimulated in the three subfractions, particularly in the RNA-rich microsomal component. 3-Hydroxy-3-methylglutaryl-CoA reductase, on the other hand, was suppressed (30%) in only one (RNA-poor) of the three microsomal subfractions, despite a 1.4-fold increase in the concentration of membrane cholesterol. An attempt was made to distinguish between an effect based exclusively on an increase in available cholesterol substrate and an activation of acyl-CoA: cholesterol acyltransferase in RNA-rich microsomes enriched with cholesterol. An experimental design was devised so that substrate cholesterol was provided in the form of heated smooth microsomes and acyl-CoA: cholesterol acyltransferase was provided as a separate preparation in the form of RNA-rich microsomes. Appropriate controls were carried out to test for transfer of cholesteryl ester between the two sets of particles. The results suggested that cholesterol enhanced acyl-CoA: cholesterol acyltransferase activity by serving both as a substrate and as a non-substrate modulator.  相似文献   

2.
The relationship of microsomal cholesterol and phospholipid fatty acid composition to the activities of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase was investigated in male, female virgin and pregnant rats when hepatic cholesterogenesis was stimulated by cholestyramine. Cholestyramine increased HMG-CoA reductase activity in both sexes but had no effect on microsomal free cholesterol level or acyl-CoA: cholesterol acyltransferase activity. The data suggest that during cholestyramine treatment high rates of bile acid synthesis are supported by preferential channelling of cholesterol into this pathway, whilst the substrate pool and activity of acyl-CoA:cholesterol acyltransferase are maintained unaltered. The lack of a consistent relationship among enzyme activities and microsomal lipid composition infers that HMG-CoA reductase and acyl-CoA:cholesterol acyltransferase are regulated in vivo by independent mechanisms which are unlikely to involve modulation by the physical properties of the microsomal lipid.  相似文献   

3.
At 1-2 h after intragastric administration of ketoconazole, a cytochrome P-450 inhibitor, to rats, there was a 50-60% decrease in the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. Inhibition reached a maximum at 6-12 h after the drug was given, but after 24 h enzyme activity was stimulated by 60%. The rates of synthesis of hepatic non-saponifiable lipids in vivo showed a similar time-dependent pattern of change. During the first few hours after drug administration, the hepatic cytochrome P-450-dependent metabolism of lanosterol was suppressed in vivo. However, 24 h after treatment, this activity was stimulated, an effect which was also observed by pre-treatment of the rats with the drug for several days. Suppression of hepatic HMG-CoA reductase and lanosterol 14 alpha-demethylase activities was accompanied by a relative increase in the accumulation of labelled polar sterols in the liver in vivo. In the intestine, ketoconazole also resulted in a rapid decline in the rate of synthesis of non-saponifiable lipids and an inhibition of lanosterol 14 alpha-demethylation in vivo. However, in contrast with the liver, there was no stimulation of non-saponifiable lipid synthesis after 24 h.  相似文献   

4.
Hepatic regulatory oxysterols were analyzed to determine which oxysterols were present in livers of mice fed a cholesterol-free diet and whether repression of 3-hydroxy-3-methylglutaryl-CoA reductase following cholesterol feeding was accompanied by an increase in one or more oxysterols. Analysis of free and esterified sterols from mice fed a cholesterol-free diet resulted in the identification and quantitation of six regulatory oxysterols: 24-hydroxycholesterol, 25-hydroxycholesterol, 26-hydroxycholesterol, 7 alpha-hydroxycholesterol, 7 beta-hydroxycholesterol, and 7-ketocholesterol. Following the addition of cholesterol to the diet for 1 or 2 nights, hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity declined and the levels of oxysterols, especially those of the side-chain-hydroxylated sterols, increased. Total 3-hydroxy-3-methylglutaryl-CoA reductase repressor units attributable to identified free oxysterols increased 2.5- and 6-fold after 1 and 2 nights, respectively, of cholesterol feeding. The amounts of esterified 24-, 25-, and 26-hydroxycholesterol also increased, with the increase in esterified 24-hydroxycholesterol being the greatest. The 24-hydroxycholesterol was predominantly the 24S epimer and the 26-hydroxycholesterol was predominantly the 25R epimer, indicating enzymatic catalysis of their formation. The observed correlation between increased levels of regulatory oxysterols and repression of 3-hydroxy-3-methylglutaryl-CoA reductase in cholesterol-fed mice is consistent with a hypothesis that intracellular oxysterol metabolites regulate the level of the reductase.  相似文献   

5.
We have studied the correlation between changes in the lipid composition in chick liver microsomes and the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acyl-CoA : cholesterol acyltransferase (ACAT) by in vivo and in vitro experiments with 21-day-old chicks. A 5% cholesterol diet for 3 hr produced an increase in the microsomal and plasmatic cholesterol content, a decrease in HMG-CoA reductase activity and a concomitant increase in ACAT activity. The effect produced by the short-term treatment virtually disappeared 27 hr after ending the cholesterol diet. In vitro experiments were carried out by using vesicles constituted by phosphatidycholine/cholesterol and phosphatidylcholine.  相似文献   

6.
7.
The cholesterol content of the endoplasmic reticulum (ER) and the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) imbedded therein respond homeostatically within minutes to changes in the level of plasma membrane cholesterol. We have now examined the roles of sterol regulatory element-binding protein (SREBP)-dependent gene expression, side chain oxysterol biosynthesis, and cholesterol precursors in the short term regulation of ER cholesterol levels and HMGR activity. We found that SREBP-dependent gene expression is not required for the response to changes in cell cholesterol of either the pool of ER cholesterol or the rate of cholesterol esterification. It was also found that the acute proteolytic inactivation of HMGR triggered by cholesterol loading required the conversion of cholesterol to 27-hydroxycholesterol. High levels of exogenous 24,25-dihydrolanosterol drove the inactivation of HMGR; lanosterol did not. However, purging endogenous 24,25-dihydrolanosterol, lanosterol, and other biosynthetic sterol intermediates by treating cells with NB-598 did not greatly affect either the setting of their ER cholesterol pool or the inactivation of their HMGR. In summary, neither SREBP-regulated genes nor 27-hydroxycholesterol is involved in setting the ER cholesterol pool. On the other hand, 27-hydroxycholesterol, rather than cholesterol itself or biosynthetic precursors of cholesterol, stimulates the rapid inactivation of HMGR in response to high levels of cholesterol.  相似文献   

8.
9.
1. CoA-thioether analogues of 3-hydroxy-3-methylglutaryl-CoA containing an additional methyl group at positions 2, 6(methyl at C3) or 4 of the acyl residue were prepared. To probe for hydrophobic interaction, their inhibitory properties were determined with 3-hydroxy-3-methylglutaryl-CoA reductase purified from baker's yeast. The CoA-thioethers were purely competitive inhibitors whose affinity to the reductase was near to that of the physiological substrate. 2. CoA-sulfoxides derived from the CoA-thioethers displayed affinities to the reductase superior to that of the physiological substrate (Km = 7 microM). Depending on the degree of recognition of diastereomers by the enzyme, the inhibitor constants of the two best inhibitors vary from Ki = 200 nM and Ki = 80 nM (diastereomeric mixtures) to 25 nM and 20 nM, respectively (if only one diastereomer would interact with the enzyme).  相似文献   

10.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A:cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA:cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and 'reactivation' of enzyme activity. Cytosol caused a 78% increase in acyl-CoA:cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A:cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA:cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500 X g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA:cholesterol acyltransferase activity is observed.  相似文献   

11.
Methyl (RS)-5-bromo-3-hydroxy-3-methyl-pentanoate was prepared by bromination of methyl mevalonate and used for the formation of 4-carboxy-3-hydroxy-3-methylbutyl thioether derivatives by reaction with N-octanoyl-cysteamine, pantetheine, phosphopantetheine and coenzyme A. These thiols were also converted to the (RS)-3-hydroxy-3-methylglutaryl thioester derivatives. The thioesters formed with pantetheine and phosphopantetheine are substrates of 3-hydroxy-3-methylglutaryl-CoA reductase; Km and V values are similar to those of the superior CoA-derivative. The corresponding thioether derivatives in which the oxygen next to sulfur of the substrates is replaced by hydrogen, are inhibitors of the reductase. The inhibition is competitive with 3-hydroxy-3-methylglutaryl-CoA varied, and noncompetitive with NADPH varied. For each of the corresponding pairs of thioester and thioether derivatives Km (substrate) is nearly identical with Ki (inhibitor). The specificity and stereospecificity of the inhibitor action are also shown.  相似文献   

12.
Pregnant rats were given pharmacological doses of cortisol or ACTH or no hormone from gestation day 9 to 19 and maternal and fetal hepatic 3-hydroxy-3-methylglutaryl-CoA reductase activity and plasma cholesterol studied on gestation day 20. Reductase activity was also studied in the maternal and fetal adrenal of the rats given cortisol or no hormone. Cortisol administration increased the maternal and fetal plasma cholesterol but had no effect on the hepatic active (phosphorylated) 3-hydroxy-3-methylglutaryl-CoA reductase activity when compared to untreated rats. Total (active + inactive) 3-hydroxy-3-methylglutaryl-CoA reductase activity, however, was reduced in maternal liver but not altered in the fetal liver by cortisol. The maternal cortisol treatment decreased the fetal, but not maternal, adrenal 3-hydroxy-3-methylglutaryl-CoA reductase total enzyme activity. The data support a hypothesis that utilization of plasma cholesterol for adrenal steroidogenesis may be an important determinant of plasma cholesterol homeostasis in the rat fetus. Maternal ACTH administration increased the foetal but not maternal plasma cholesterol, whilst active 3-hydroxy-3-methylglutaryl-CoA reductase activity was increased in the pregnant rat but not her fetuses. This result may suggest coordination of hepatic active reductase activity with adrenal cholesterol utilization in the pregnant rat. The reason for the fetal hypercholesterolaemia caused by ACTH, which is not known to cross the placenta, is uncertain. The studies, however, indicate that fetal cholesterol homeostasis and the rate limiting enzyme of cholesterol synthesis is influenced by maternal glucocorticoid administration.  相似文献   

13.
Pseudomonas mevalonii (formerly designated Pseudomonas sp. M (Beach, M. J., and Rodwell, V. W. (1989) J. Bacteriol. 171, 2994-3001; Gill, J. F., Jr., Beach, M.J., and Rodwell, V. W. (1985) J. Biol. Chem. 260, 9393-9398] 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.88), overexpressed in Escherichia coli (1), has been purified to electrophoretic homogeneity in 75% yield (final specific activity 48 mumols of NAD+ reduced per min/mg protein). The enzyme catalyzes its normal catabolic reaction (mevalonate + 2 NAD+ + CoASH----HMG-CoA + 2NADH + 2H+), and two half-reactions which involve mevaldehyde, the postulated intermediate in the aforementioned reactions and mevaldehyde + NADH + H+----mevalonate + NAD+). The rates of all four reactions and the Michaelis constants for all substrates were measured. Coenzyme A decreased the KM for mevaldehyde reduction 12-fold and stimulated VMAX 2-3 fold. CoASH thus may remain bound throughout the catalytic cycle. Dithiothreitol and analogs of CoASH were tested for their ability to reproduce the CoASH stimulation. Pantetheine, but not dithiothreitol, pantothenate, or desulfo-CoA mimicked CoASH stimulation. Titration with 5,5'-dithiobis(2-nitrobenzoic acid) indicated two sulfhydryl groups per subunit. Both groups remained accessible to 5,5'-dithiobis(2-nitrobenzoic acid) in the presence of mevalonate and/or NAD+ but only one group in the presence of HMG-CoA. N-Ethylmaleimide inhibited all the aforementioned reactions. HMG-CoA, but not mevalonate, afforded protection completely and irreversibly inactivated the enzyme. The reactive sulfhydryl group thus may not be a catalytic residue, but may be involved in a conformational change.  相似文献   

14.
Activities of 3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthetase and cholesterol 7 alpha-hydroxylase, measured in liver microsomal preparations from domestic swine between birth and adolescence, correlated strongly in individual animals. A synchronous increase was observed between 4 and 6 weeks after birth, i.e., immediately after weaning. Rise in activity was highest for HMG-CoA reductase (30-fold), and smallest for squalene synthetase (5-fold). In pubertal pigs (16 to 30 weeks old), activities of these enzymes had the same low values as in suckling piglets. The increase of both HMG-CoA reductase and squalene synthetase activities may be caused by the shift from high-cholesterol milk intake to a chow diet with low-cholesterol content. The rise in cholesterol 7 alpha-hydroxylase activity might be due to other dietary or hormonal factors.  相似文献   

15.
16.
The endoplasmic reticulum (ER) quality control pathway destroys misfolded and unassembled proteins in the ER. Most substrates of this ER-associated degradation (ERAD) pathway are constitutively targeted for destruction through recognition of poorly understood structural hallmarks of misfolding. However, the normal yeast ER membrane protein 3-hydroxy-3-methylglutaryl-CoA reductase (Hmg2p) undergoes ERAD that is physiologically regulated by sterol pathway signals. We have proposed that Hmg2p ERAD occurs by a regulated transition to an ERAD quality control substrate. Consistent with this, we had previously shown that Hmg2p is strongly stabilized by chemical chaperones such as glycerol, which stabilize misfolded proteins. To understand the features of Hmg2p that permit regulated ERAD, we have thoroughly characterized the effects of chemical chaperones on Hmg2p. These agents caused a reversible, immediate, direct change in Hmg2p degradation consistent with an effect on Hmg2p structure. We devised an in vitro limited proteolysis assay of Hmg2p in its native membranes. In vitro, chemical chaperones caused a dramatic, rapid change in Hmg2p structure to a less accessible form. As in the living cell, the in vitro action of chemical chaperones was highly specific for Hmg2p and completely reversible. To evaluate the physiological relevance of this model behavior, we used the limited proteolysis assay to examine the effects of changing in vivo degradation signals on Hmg2p structure. We found that changes similar to those observed with chemical chaperones were brought about by alteration of natural degradation signal. Thus, Hmg2p can undergo significant, reversible structural changes that are relevant to the physiological control of Hmg2p ERAD. These findings support the idea that Hmg2p regulation is brought about by regulated alteration of folding state. Considering the ubiquitous nature of quality control pathways in biology, it may be that this strategy of regulation is widespread.  相似文献   

17.
18.
19.
The steady-state level of the resident endoplasmic reticulum protein, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), is regulated, in part, by accelerated degradation in response to excess sterols or mevalonate. Previous studies of a chimeric protein (HM-Gal) composed of the membrane domain of HMGR fused to Escherichia coli beta-galactosidase, as a replacement of the normal HMGR cytosolic domain, have shown that the regulated degradation of this chimeric protein, HM-Gal, is identical to that of HMGR (Chun, K. T., Bar-Nun, S., and Simoni, R. D. (1990) J. Biol. Chem. 265, 22004-22010; Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). Since the cytosolic domain can be replaced with beta-galactosidase without effect on regulated degradation, it has been assumed that the cytosolic domain was not important to this process and also that the membrane domain of HMGR was both necessary and sufficient for regulated degradation. In contrast to our previous results with HM-Gal, we observed in this study that replacement of the cytosolic domain of HMGR with various heterologous proteins can have an effect on the regulated degradation, and the effect correlates with the oligomeric state of the replacement cytosolic protein. Chimeric proteins that are oligomeric in structure are relatively stable, and those that are monomeric are unstable. To test the hypothesis that the oligomeric state of the cytosolic domain of HMGR influences degradation, we use an "inducible" system for altering the oligomeric state of a protein in vivo. Using a chimeric protein that contains the membrane domain of HMGR fused to three copies of FK506-binding protein 12, we were able to induce oligomerization by addition of a "double-headed" FK506-like "dimerizer" drug (AP1510) and to monitor the degradation rate of both the monomeric form and the drug-induced oligomeric form of the protein. We show that this chimeric protein, HM-3FKBP, is unstable in the monomeric state and is stabilized by AP1510-induced oligomerization. We also examined the degradation rate of HMGR as a function of concentrations within the cell. HMGR is a functional dimer; therefore, its oligomeric state and, we predict, its degradation rate should be concentration-dependent. We observed that it is degraded more rapidly at lower concentrations.  相似文献   

20.
Microsomal 3-hydroxy-3-methylglutaryl-CoA reductase isolated from the livers of rats fed a diet containing cholestyramine (HMGR-C) is oxidized to a protein-SS-protein disulfide via a thermodynamically favorable thiol/disulfide exchange in glutathione redox buffers which approach the normal in vivo redox poise. In the presence of either substrate (NADPH or 3-hydroxy-3-methylglutaryl-CoA), the equilibrium thiol/disulfide redox behavior of HMGR-C is substantially different than that observed in the absence of substrates or in the presence of both substrates. NADPH present during redox equilibrium in a glutathione redox buffer decreases the equilibrium constant for formation of the protein-SS-protein disulfide (Kox,i) from 0.55 +/- 0.07 M to 0.18 +/- 0.02 M and increases the Kox,m for formation of an inactive protein-SS-glutathione mixed disulfide from less than 1 to 6 +/- 1. The presence of 3-hydroxy-3-methylglutaryl-CoA during redox equilibrium has a similar effect, decreasing the Kox,i for protein-SS-protein disulfide formation to 0.10 +/- 0.02 M and increasing the Kox,m for protein-SS-glutathione mixed disulfide formation to 3.8 +/- 0.9. A three-state model is developed which describes the simultaneous accumulation of protein-SS-protein and protein-SS-glutathione mixed disulfides at redox equilibrium with glutathione redox buffers. Because of the different redox behavior of the free and substrate-liganded forms of the enzyme, addition of 3-hydroxy-3-methylglutaryl-CoA or NADPH to HMGR-C at redox equilibrium results in increased reduction and activation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号