首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bacillus subtilis YkuV responds to environmental oxidative stress and plays an important role for the bacteria to adapt to the environment. Bioinformatic analysis suggests that YkuV is a homolog of membrane-anchored proteins and belongs to the thioredoxin-like protein superfamily containing the typical Cys-Xaa-Xaa-Cys active motif. However, the biological function of this protein remains unknown thus far. In order to elucidate the biological function, we have determined the solution structures of both the oxidized and reduced forms of B. subtilis YkuV by NMR spectroscopy and performed biochemical studies. Our results demonstrated that the reduced YkuV has a low midpoint redox potential, allowing it to reduce a variety of protein substrates. The overall structures of both oxidized and reduced forms are similar, with a typical thioredoxin-like fold. However, significant conformational changes in the Cys-Xaa-Xaa-Cys active motif of the tertiary structures are observed between the two forms. In addition, the backbone dynamics provide further insights in understanding the strong redox potential of the reduced YkuV. Furthermore, we demonstrated that YkuV is able to reduce different protein substrates in vitro. Together, our results clearly established that YkuV may function as a general thiol:disulfide oxidoreductase, which acts as an alternative for thioredoxin or thioredoxin reductase to maintain the reducing environment in the cell cytoplasm.  相似文献   

2.
Many proteins function as homo-oligomers and are regulated via their oligomeric state. For some proteins, the stoichiometry of homo-oligomeric states under various conditions has been studied using gel filtration or analytical ultracentrifugation experiments. The interfaces involved in these assemblies may be identified using cross-linking and mass spectrometry, solution-state NMR, and other experiments. However, for most proteins, the actual interfaces that are involved in oligomerization are inferred from X-ray crystallographic structures using assumptions about interface surface areas and physical properties. Examination of interfaces across different Protein Data Bank (PDB) entries in a protein family reveals several important features. First, similarities in space group, asymmetric unit size, and cell dimensions and angles (within 1%) do not guarantee that two crystals are actually the same crystal form, containing similar relative orientations and interactions within the crystal. Conversely, two crystals in different space groups may be quite similar in terms of all the interfaces within each crystal. Second, NMR structures and an existing benchmark of PDB crystallographic entries consisting of 126 dimers as well as larger structures and 132 monomers were used to determine whether the existence or lack of common interfaces across multiple crystal forms can be used to predict whether a protein is an oligomer or not. Monomeric proteins tend to have common interfaces across only a minority of crystal forms, whereas higher-order structures exhibit common interfaces across a majority of available crystal forms. The data can be used to estimate the probability that an interface is biological if two or more crystal forms are available. Finally, the Protein Interfaces, Surfaces, and Assemblies (PISA) database available from the European Bioinformatics Institute is more consistent in identifying interfaces observed in many crystal forms compared with the PDB and the European Bioinformatics Institute's Protein Quaternary Server (PQS). The PDB, in particular, is missing highly likely biological interfaces in its biological unit files for about 10% of PDB entries.  相似文献   

3.
The detailed analysis of the continuous-wave electron paramagnetic resonance and electron nuclear double resonance measurements on cytochrome c(6) from Anabaena PCC7119 reveals several electronic and structural properties of this hemeprotein. The oxidized protein shows two forms that differ in the arrangement of the residues that act as heme axial ligands. Information about the orientation of these residues is obtained for one of the forms, which turns out to differ from that found in the reduced protein from x-ray experiments. The biological significance of these results is discussed.  相似文献   

4.
Bovine seminal ribonuclease (BS-RNase), the only dimeric protein among the pancreatic-like ribonucleases, is endowed with special structural features and with biological functions beyond enzymatic activity. In solution, the protein exists as an equilibrium mixture of two forms, with or without exchange (or swapping) of the N-terminal arms. After selective reduction and alkylation of the two intrachain disulfide bridges, the dimeric protein can be transformed into a monomeric derivative that has a ribonuclease activity higher than that of the parent dimeric protein but is devoid of the special biological functions. A detailed investigation of the structural features of this protein in solution, in comparison with those of other monomeric ribonucleases, may help unveil the structural details which induce swapping of the N-terminal arms of BS-RNase. The solution structure of the recombinant monomeric form of BS-RNase, as determined by 3D heteronuclear NMR, shows close similarity with that of bovine pancreatic ribonuclease (RNase A) in all regions characterized by regular elements of secondary structure. However, significant differences are present in the flexible regions, which could account for the different behavior of the two proteins. To characterize in detail these regions, we have measured H/D exchange rate constants, temperature coefficients and heteronuclear NOEs of backbone amides for both RNase A and monomeric BS-RNase. The results indicate a large difference in the backbone flexibility of the hinge peptide segment 16-22 of the two proteins, which could provide the molecular basis to explain the ability of BS-RNase subunits to swap their N-terminal arms.  相似文献   

5.
For problems of classification and comparison in biological research, the primary focus is on the similarity of forms. A biological form consists of size and shape. Several approaches for comparing biological forms using landmark data are available. If the two biological forms are demonstrated to be different, the next important issue is to localize the differences by identifying those areas which differ most between the two objects. In this paper we suggest a technique to detect influential landmarks, those which contribute most to the difference between forms. We study the effectiveness of the technique using three-dimensional simulated data sets and two examples. Results suggest that the technique is useful in the study of biological form and its variation.  相似文献   

6.
Cyclin-dependent kinases (CDKs) are enzymes involved in crucial cellular processes. Their biological activity is directly linked to their high conformational variability, which involves large protein conformational rearrangements. We present here the application of an enhancing sampling technique to the study of conformational transitions between the open and closed state of CDKs. The analysis of the conformational intermediates supports the idea that the process is regulated by two important protein regions, which sequentially rearrange in order to allow the protein to reach its final conformation. Furthermore, the two paths involve additional (minor) protein rearrangements which are specific to the paths. Our results show that our procedure can provide reasonable transition pathways between the two protein forms at a very reduced computational cost. The robustness and the simplicity of our approach make it of general application to describe virtually any macromolecular conformational transitions.  相似文献   

7.
In silico evolution of functional modules in biochemical networks   总被引:1,自引:0,他引:1  
Understanding the large reaction networks found in biological systems is a daunting task. One approach is to divide a network into more manageable smaller modules, thus simplifying the problem. This is a common strategy used in engineering. However, the process of identifying biological modules is still in its infancy and very little is understood about the range and capabilities of motif structures found in biological modules. In order to delineate these modules, a library of functional motifs has been generated via in silico evolution techniques. On the basis of their functional forms, networks were evolved from four broad areas: oscillators, bistable switches, homeostatic systems and frequency filters. Some of these motifs were constructed from simple mass action kinetics, others were based on Michaelis-Menten kinetics as found in protein/protein networks and the remainder were based on Hill equations as found in gene/protein interaction networks. The purpose of the study is to explore the capabilities of different network architectures and the rich variety of functional forms that can be generated. Ultimately, the library may be used to delineate functional motifs in real biological networks.  相似文献   

8.
The (beta/alpha)(8) barrel is the most commonly occurring fold among enzymes. A key step towards rationally engineering (beta/alpha)(8) barrel proteins is to understand their underlying structural organization and folding energetics. Using misincorporation proton-alkyl exchange (MPAX), a new tool for solution structural studies of large proteins, we have performed a native-state exchange analysis of the prototypical (beta/alpha)(8) barrel triosephosphate isomerase. Three cooperatively unfolding subdomains within the structure are identified, as well as two partially unfolded forms of the protein. The C-terminal domain coincides with domains reported to exist in four other (beta/alpha)(8) barrels, but the two N-terminal domains have not been observed previously. These partially unfolded forms may represent sequential intermediates on the folding pathway of triosephosphate isomerase. The methods reported here should be applicable to a variety of other biological problems involving protein conformational changes.  相似文献   

9.
Molecular dynamics simulations of protein unfolding were performed at an elevated temperature for the authentic and recombinant forms of goat alpha-lactalbumin. Despite very similar three-dimensional structures, the two forms have significantly different unfolding rates due to an extra N-terminal methionine in the recombinant protein. To identify subtle differences between the two forms in the highly stochastic kinetics of unfolding, we classified the unfolding trajectories using the multiple alignment method based on the analogy between the biological sequences and the molecular dynamics trajectories. A dendrogram derived from the multiple trajectory alignment revealed a clear difference in the unfolding pathways of the authentic and recombinant proteins, i.e. the former reached the transition state in an all-or-none manner while the latter unfolded less cooperatively. It was also found in the classification that the two forms of the protein shared a common transition state structure, which was in excellent agreement with the transition state structure observed experimentally in the Phi-value analysis.  相似文献   

10.
11.
Data on protein yields show that forage crops, particularly alfalfa, produce several times more protein per acre than do seed crops. Amino acid analyses and estimations of biological values by enzymatic hydrolysis and feeding trials indicate that protein concentrates from green plants have high nutritive value. The protein concentrates from 10 plant species had a similar amino acid composition and biological value which indicates that good protein might be obtained from many plant species. It is suggested that the use of the fibrous residue as a feed for ruminants and the use of the protein concentrate as a high protein feed or base for processing into new protein foods may make it possible for the production of protein from green plants to compete with other sources of protein. This would markedly increase protein production per acre and allow the use of new plant species in our agriculture. The need for more research on protein production from different types of green plants and on ways to harvest, concentrate and process their proteins into edible forms is discussed.  相似文献   

12.
13.
Rab6 protein (rab6p) belongs to a family of ras-like GTP-binding proteins thought to be involved in the regulation of intracellular transport in mammalian cells. We have constructed a recombinant baculovirus in order to express rab6p in insect cells. We report here the characterization of four forms of this protein which are found in cytosolic and membrane fractions of infected Sf9 cells. The two major forms are a cytosolic 24 kD protein which represents the unprocessed precursor form of rab6p and a membrane-bound isoprenylated 23 kD protein which represents the processed form. Two other minor forms were also detected: a cytosolic isoprenylated 23 kD protein which may represent a pool in equilibrium with the 23 kD membrane-bound form and a 24 kD non-isoprenylated membrane-bound form which may represent an intermediate in the processing of rab6p.  相似文献   

14.
Hormonal inhibition of adenylate cyclase is mediated by a guanine nucleotide regulatory protein (Ni) which is different from the one which mediates hormonal stimulation. There is substantial evidence that the active component of Ni (termed alpha i can be ADP-ribosylated by a toxin from Bordetella pertussis. We have found that in bovine cerebral cortex there are three proteins of similar molecular weight (39,000-41,000) which are modified by pertussis toxin. We have purified these proteins and have resolved the 41,000-dalton protein from the 40,000/39,000-dalton doublet. All three forms of pertussis toxin substrate can be isolated in free form or together with a 36,000 beta component. We have also purified this beta component. ADP-ribosylation of the three pertussis toxin substrates is greatly enhanced by the addition of the purified beta component. This makes possible an assay of beta subunit activity based on its interaction with alpha i. The three forms of pertussis toxin substrate which we have purified differ in two functions: susceptibility to ADP-ribosylation and GTPase activity. The 41,000-dalton protein is more readily ADP-ribosylated by pertussis toxin than the smaller forms. The 39,000-dalton protein has GTPase activity with a low Km (0.3 microM) for GTP. The GTPase activity can be doubled by phospholipids. The GTPase activity of the 41,000-dalton protein is almost undetectable. It is not yet known what the relationship of the forms is to each other. The smaller forms may be derived from the larger by proteolysis or it may be intrinsically different. It remains to be shown whether one of the forms represents a different type of regulatory protein which transmits a hormonal signal to effectors other than adenylate cyclase.  相似文献   

15.
The SNF2-like chromatin-remodeling ATPase SPLAYED (SYD) was identified as a co-activator of floral homeotic gene expression in Arabidopsis. SYD is also required for meristem maintenance and regulates flowering under a non-inductive photoperiod. SNF2 ATPases are structurally and functionally conserved from yeast to humans. In addition to the conserved protein features, SYD has a large unique C-terminal domain. We show here that SYD is present as two forms in the nucleus, full-length and truncated, with the latter apparently lacking the C-terminal domain. The ratio of the two forms of endogenous SYD differs in juvenile and in adult tissues. Furthermore, an SYD variant lacking the C-terminal domain (SYDDeltaC) rescues the syd null mutant, indicating that the N-terminal ATPase AT-hook-containing region of SYD is sufficient for biological activity. Plants expressing SYDDeltaC show molecular and morphological phenotypes opposite to those of the null mutant, suggesting that the construct results in increased activity. This increased activity is at least in part due to elevated SYD protein levels in these lines. We propose that the C-terminal domain may control SYD accumulation and/or specific activity in the context of the full-length protein. The presence of the C-terminal domain in rice SYD suggests that its role is probably conserved in the two classes of flowering plants.  相似文献   

16.
Galician exposed shore populations of the direct developing periwinkle Littorina saxatilis are strikingly polymorphic, with an ornamented and banded upper shore form and a smooth and unbanded lower shore form. Intermediates between the two pure forms occur in a narrow mid shore zone together with the parental forms. We have previously shown that the two pure forms share the same gene pool but that mating between them is non-random. This is due to a non-random microdistribution in the zone of overlap, and also to assortative mating. In this study we present data which show that intermediate (hybrid) females mate less often than pure females in micropatches dominated by either of the pure forms, but not in micropatches in which the two pure forms are equally common. Thus, sexual fitness in intermediate females depends on the frequency of both pure morphs. Furthermore, sexual selection against intermediate females also varies with the densities of snails within each micro patch. The biological mechanisms which may explain this particular reduction of female hybrid fitness are discussed. Assortative mating between the pure morphs is sometimes almost complete, while both morphs do not mate the intermediates assortatively. In the light of this, sexual selection against intermediate females may contribute considerably to restrict gene flow between the pure forms.  相似文献   

17.
The structure of Vibrio cholerae protein VC0424 was determined by NMR spectroscopy. VC0424 belongs to a conserved family of bacterial proteins of unknown function (COG 3076). The structure has an alpha-beta sandwich architecture consisting of two layers: a four-stranded antiparallel beta-sheet and three side-by-side alpha-helices. The secondary structure elements have the order alphabetaalphabetabetaalphabeta along the sequence. This fold is the same as the ferredoxin-like fold, except with an additional long N-terminal helix, making it a variation on this common motif. A cluster of conserved surface residues on the beta-sheet side of the protein forms a pocket that may be important for the biological function of this conserved family of proteins.  相似文献   

18.
A short account is given of the physical and chemical studies that have led to an understanding of the structure of the tobacco mosaic virus particle and how it is assembled from its constituent coat protein and RNA. The assembly is a much more complex process than might have been expected from the simplicity of the helical design of the particle. The protein forms an obligatory intermediate (a cylindrical disk composed of two layers of protein units), which recognizes a specific RNA hairpin sequence. This extraordinary mechanism simultaneously fulfils the physical requirement for nucleating the growth of the helical particle and the biological requirement for specific recognition of the viral DNA.  相似文献   

19.
Posttranslational processing and subcellular localization of the HCV core protein are critical steps involved in the assembly of hepatitis C virus (HCV). In this study, both of these events were investigated by in vitro translation and transient COS-1 cell transfection of core protein expression constructs. Mutations at amino acid residues 173 to 174 and 191 to 192 disrupted processing events at the two putative cleavage sites in the C-terminal hydrophobic region of the core protein, indicating that these residues are implicated in the pathway of core protein maturation. As a result, two forms of core protein, C173 and C191, were detected by immunoblotting. Indirect immunofluorescence experiments showed that core proteins C173 and C191, when produced from HCV full-length protein or various polyprotein precursors, displayed a cytoplasmic localization. The C173 species, however, was translocated to the nucleus when expressed in the absence of C191. These findings indicate that preferential cleavage may occur during core protein maturation and that the association of the C191 with the C173 species may contribute to the distinct subcellular distribution of core protein. This may provide a possible mechanism for the control of the diverse biological functions of core protein during HCV replication and assembly.  相似文献   

20.
Gelsolin is a Ca2+-binding protein of mammalian leukocytes, platelets and other cells which has multiple and closely regulated powerful effects on actin. In the presence of micromolar Ca2+, gelsolin severs actin filaments, causing profound changes in the consistency of actin polymer networks. A variant of gelsolin containing a 25-amino acid extension at the NH2-terminus is present in plasma where it may be involved in the clearance of actin filaments released during tissue damage. Gelsolin has two sites which bind actin cooperatively. These sites have been localized using proteolytic cleavage and monoclonal antibody mapping techniques. The NH2-terminal half of the molecule contains a Ca2+-insensitive actin severing domain while the COOH-terminal half contains a Ca2+-sensitive actin binding domain which does not sever filaments. These data suggest that the NH2-terminal severing domain in intact gelsolin is influenced by the Ca2+-regulated COOH-terminal half of the molecule. The primary structure of gelsolin, deduced from human plasma gelsolin cDNA clones, supports the existence of actin binding domains and suggests that these may have arisen from a gene duplication event, and diverged subsequently to adopt their respective unique functions. The plasma and cytoplasmic forms of gelsolin are encoded by a single gene, and preliminary results indicate that separate mRNAs code for the two forms. Further application of molecular biological techniques will allow exploration into the structural basis for the multifunctionality of gelsolin, as well as the molecular basis for the genesis of the cytoplasmic and secreted forms of gelsolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号