首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]ouabain autoradiography of frog retina   总被引:2,自引:0,他引:2       下载免费PDF全文
The kinetics and distribution of ouabain binding in retinas of Rana pipiens were examined quantitatively by scintillation counting and freeze-dry autoradiography. The time-course of binding at several concentrations was consistent with a bimolecular reaction. Estimated equilibrium binding levels gave a Michaelis-Menton relationship with a Km = 8.3 x 10(-8) M and a maximum binding level (Bmax) = 4.4 x 10(-8) mol/g protein. The distribution of binding sites measured autoradiographically varied considerably between layers. The photoreceptor, inner plexiform, and optic nerve fiber layers exhibited the heaviest binding. Within the photoreceptor layer, binding was nonuniform. Binding in the outer segment decreased distally, averaging approximately 4% of that in the proximal receptor layers (Bmax = 4.6 x 10(-6) M). The origin of the outer segment activity is uncertain at light microscope resolution, as it may be a result of inner segment calyceal processes. Binding within the proximal receptor layers was also nonuniform. Several peaks were observed, with those at the inner segment and synaptic layers being especially noticeable. Assuming an absence of glial cell binding in the proximal receptor layers, we calculated there to be 13 x 10(6) ouabain or Na+,K+ pump sites per rod receptor. Limited measurements suggest a Bmax of approximately 8 x 10(-6) M for the inner plexiform layer.  相似文献   

2.
The relaxation kinetics of frog skin open circuit voltage, Voc, and short circuit current Isc, was studied by analyzing the effects of subjecting the tissue to sudden increments of hydrostatic pressure. Both Voc and Isc are perturbed by the pressure jump. Changes in Voc can be resolved into three components: a rapid decrease (phase I), a second, additional decrease with time constant 2.2 s (phase II), and finally a very slow increase found only in some preparations. The amplitudes of phases I and II are linear in the range of pressures studied (<350 atm) and have respective pressure coefficients of −1.2 · 10−4atm−1 and −3.7 · 10−4atm−1.Under short circuit conditions phases I and II persist. The pressure coefficients of the amplitudes of phase I and II, −4.3 · 10−4atm−1 and −5.0 · 10−4atm−1, respectively, are larger than those of Voc, but the time constant of phase II, 2.2 s, is the same. The sum of the amplitudes of phases I and II is directly proportional to Isc when it is inhibited with ouabain. It is argued that in both electrical states pressure perturbs the same transport mechanism giving rise to phases I and II of Voc and Isc.The magnitude of the pressure coefficients of these processes implies that they arise from chemical reactions, rather than from simple, physical solution properties. Comparison of the pressure jump kinetics with the previous spectral analysis of the electrical fluctuations of frog skin suggests a common origin for both sets of phenomena.  相似文献   

3.
The tritiated cardiotonic steroids, ouabain, digitoxin, and digitoxigenin are shown to photolabel the large polypeptide but not the glycoprotein or proteolipid component of the (Na+ + K+)-ATPase when they are bound to the inhibitory site and exposed to light of 220 or 254 nm. The extent of photolabeling is low, less than 1%, and is limited by photocross-linking of the enzyme. The mechanism of photoincorporation does not appear to be either photolysis of the lactone ring in ouabain or photolysis of tryptophan or tyrosine residues in the polypeptide.  相似文献   

4.
The relaxation kinetics of frog skin open circuit voltage, Voc, and short circuit current, Isc, was studied by analyzing the effects of subjecting the tissue to sudden increments of hydrostatic pressure. Both Voc and Isc are perturbed by the pressure jump. Changes in Voc can be resolved into three components: a rapid decrease (phase I), a second, additional decrease with time constant 2.2 s (phase II), and finally a very slow increase found only in some preparations. The amplitudes of phases I and II are linear in the range of pressures studied (less than 350 atm) and have respective pressure coefficients of -1.2.10(-4) atm-1 and 3.7.10(-4) atm-1. Under short circuit conditions, phases I and II persist. The pressure coefficients of the amplitudes of phases I and II, -4.3.10(-4) ATM-1 and -5.0.10(-4)ATM-1, respectively, are larger than those of Voc, but the time constant of phase II, 2.2 S, is the same. The sum of the amplitudes of phases I and II is directly proportional to Isc when it is inhibited with ouabain. It is argued that in both electrical states pressure perturbs the same transport mechanism giving rise to phases I and II of Voc and of Isc. The magnitude of the pressure coefficients of these processes implies that they arise from chemical reactions, rather than from simple, physical solution properties. Comparison of the pressure jump kinetics with the previous spectral analysis of the electrical fluctuations of frog skin suggests a common origin for both sets of phenomena.  相似文献   

5.
Whole-cell patch-clamp measurements of the current, Ip, produced by the Na+,K+-ATPase across the plasma membrane of rabbit cardiac myocytes show an increase in Ip over the extracellular Na+ concentration range 0–50 mM. This is not predicted by the classical Albers-Post scheme of the Na+,K+-ATPase mechanism, where extracellular Na+ should act as a competitive inhibitor of extracellular K+ binding, which is necessary for the stimulation of enzyme dephosphorylation and the pumping of K+ ions into the cytoplasm. The increase in Ip is consistent with Na+ binding to an extracellular allosteric site, independent of the ion transport sites, and an increase in turnover via an acceleration of the rate-determining release of K+ to the cytoplasm, E2(K+)2 → E1 + 2K+. At normal physiological concentrations of extracellular Na+ of 140 mM, it is to be expected that binding of Na+ to the allosteric site would be nearly saturated. Its purpose would seem to be simply to optimize the enzyme’s ion pumping rate under its normal physiological conditions. Based on published crystal structures, a possible location of the allosteric site is within a cleft between the α- and β-subunits of the enzyme.  相似文献   

6.
7.
The effect of a range of ovine prolactin doses (10(-9)-10(-6)M) on the short circuit current (Isc), potential difference (E) and electrical resistance (R) of isolated frog skin has been studied. Prolactin produced a dose dependent stimulation of Isc and generally a fall in R, although the latter was only significant after 10(-9) and 10(-6)M prolactin. The effect of prolactin on E was found to be more dependent upon the initial E (at the time of hormone addition) than on the dose of hormone. 10(-9)M prolactin, in contrast to higher doses, produced a sustained fall in R without stimulating Isc. Thus the effect of prolactin on frog skin appears to be predominantly on passive permeability at low doses, and on active ion transport at higher doses.  相似文献   

8.
Sanguinarine, a benzophenanthridine alkaloid, causes an initial stimulation of frog skin short circuit current Isc when present in the mucosal bathing medium at 10?4 M. The stimulation is accompanied by an increase in spontaneous potential difference (PD) and increase in D.C. resistance. No effects are seen with sanguinarine in the serosal bathing medium. The initial stimulation is followed by a decrease in Ise and PD, but a continued increase in resistance. In skins whose initial spontaneous PD is high, no initial stimulation in se and PD is seen; however, clamping these skins to a lower potential does not alter their initial inhibitory response to sanguinarine. Likewise, clamping the lower potential skins to higher potential does not alter their initial stimulatory response. Sanguinarine seems to be acting on the permeability barriers at the outer surface of the frog skin.  相似文献   

9.
The Mg2+ dependence of the kinetics of the phosphorylation and conformational changes of Na+,K+-ATPase was investigated via the stopped-flow technique using the fluorescent label RH421. The enzyme was preequilibrated in buffer containing 130 mM NaCl to stabilize the E1(Na+)3 state. On mixing with ATP, a fluorescence increase was observed. Two exponential functions were necessary to fit the data. Both phases displayed an increase in their observed rate constants with increasing Mg2+ to saturating values of 195 (± 6) s−1 and 54 (± 8) s−1 for the fast and slow phases, respectively. The fast phase was attributed to enzyme conversion into the E2MgP state. The slow phase was attributed to relaxation of the dephosphorylation/rephosphorylation (by ATP) equilibrium and the buildup of some enzyme in the E2Mg state. Taking into account competition from free ATP, the dissociation constant (Kd) of Mg2+ interaction with the E1ATP(Na+)3 state was estimated as 0.069 (± 0.010) mM. This is virtually identical to the estimated value of the Kd of Mg2+-ATP interaction in solution. Within the enzyme-ATP-Mg2+ complex, the actual Kd for Mg2+ binding can be attributed primarily to complexation by ATP itself, with no apparent contribution from coordination by residues of the enzyme environment in the E1 conformation.  相似文献   

10.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.  相似文献   

11.
Sanguinarine, a benzophenanthridine alkaloid, causes a initial stimulation of frog skin short circuit current Isc when present in the mucosal bathing medium at 10(-4) M. The stimulation is accompanied by an increase in spontaneous potential difference (PD) and increase in D.C. resistance. No effects are seen with sanguinarine in the serosal bathing medium. The initial stimulation is followed by a decrease in Isc and PD, but a continued increase in resistance. In skins whose initial spontaneous PD is high, no initial stimulation in Isc and PD is seen; however, clamping these skins to a lower potential does not alter their initial inhibitory response to sanguinarine. Likewise, clamping the lower potential skins to higher potential does not alter their initial stimulatory response. Sanguinarine seems to be acting on the permeability barriers at the outer surface of the frog skin.  相似文献   

12.
13.
Specific binding of radiolabeled inhibitor was employed to localize the Na-pump sites (Na,K-ATPase) in rectal gland epithelium, a NaCl-secreting osmoregulatory tissue which is particularly rich in pump sites. Slices of gland tissue from spiny dogfish were incubated in suitable [3H]ouabain-containing media and then prepared for Na,K-ATPase assay, measurement of radiolabel binding, or quantitative freeze-dry autoradiography at the light microscope level. Gross freezing or drying artifacts were excluded by comparison with additional aldehyde-fixed slices. Characterization experiments demonstrated high-affinity binding which correlated with Na,K-ATPase inhibition and half-saturated at approximately 5 microM [3H]ouabain. At this concentration, the normal half-loading time was approximately 1 h and low-affinity binding to nonspecific sites was negligible. Autoradiographs from both 1- and 4-h incubated slices showed approximately 85% of the bound [3H]ouabain to be localized within a 1-micrometer wide boundary region where the highly infolded basal-lateral cell membrane are closest to the mitochondria. These results establish that most of the enormous Na,K-ATPase activity associated with rectal gland epithelium is in the basal-lateral cell membrane facing interstitial fluid and not in the luminal membrane facing secreted fluid. Moreover, distribution along the basal-lateral membrane appears to be nonuniform with a higher density of enzyme sites close to mitochondria.  相似文献   

14.
The CNS of the cockroach Periplaneta americana contains saturable, specific binding sites for [3H]GABA, [3H]flunitrazepam and [35S]TBPS. The [3H]GABA binding site exhibits a pharmacological profile distinct from that reported for mammalian GABAA and GABAB receptors. The most potent inhibitors of [3H]GABA binding were GABA and muscimol, whereas isoguvacine, thiomuscimol and 3-aminopropane sulphonic acid were less effective. Bicuculline methiodide and baclofen were ineffective. Binding of [35S]TBPS was partially inhibited by 1.0 × 10−6 M GABA, whilst binding of [3H]flunitrazepam was enhanced by 1.0 × 10−7 M GABA. The pharmacological profile of the [3H]flunitrazepam binding site showed some similarities with the peripheral benzodiazepine binding sites of vertebrates, with Ro-5-4864 being a far more effective inhibitor of binding than clonazepam. Thus a class of GABA receptors with pharmacological properties distinct from mammalian GABA receptor subtypes is present in insect CNS.  相似文献   

15.
Isolated frog skins (without chorion) were incubated with 42K+ Ringer's solution, bathing the internal surface for 2 h.All the K+ contained in the frog skin was equilibrated in specific activity with external 42K+.The kinetics of the washout of 42K+ from the internal surface of the skin exhibits one fast and one slow exponential component.Amiloride reduces the release of 42K+ corresponding to both components without affecting the K+ content of the skin.Ouabain increases the loss of 42K+ of the slow component by 200%. Since the total K+ in the skin decreases to 25% of its original value both compartments are affected.The results suggest that two distinct functional compartments exist defined by two 42K+ release ratios and that because of the large K+ contents of these compartments both are intracellular.The relation with the transepithelial Na+ transport and the morphological identification of these compartments is discussed.  相似文献   

16.
The contribution of electrostatic forces to the interaction of Na,K-ATPase with adenine nucleotides was investigated by studying the effect of ionic strength on nucleotide binding. At pH 7.0 and 20 degrees C, there was a qualitative correlation between the equilibrium dissociation constant (K(d)) values for ATP, ADP, and MgADP and their total charges. All K(d) values increased with increasing ionic strength. According to the Debye-Hückel theory, this suggests that the nucleotide binding site and its ligands have "effective" charges of opposite signs. However, quantitative analysis of the dependence on ionic strength shows that the product of the effective electrostatic charges on the ligand and the binding site is the same for all nucleotides, and is therefore independent of the total charge of the nucleotide. The data suggest that association of nucleotides with Na,K-ATPase is governed by a partial charge rather than the total charge of the nucleotide. This charge, interacting with positive charges on the protein, is probably the one corresponding to the alpha-phosphate of the nucleotide. Dissociation rate constants measured in complementary transient kinetic experiments were 13 s(-1) for ATP and 27 s(-1) for ADP, independent of the ionic strength in the range 0.1-0.5 M. This implies similar association rate constants for the two nucleotides (about 40 x 10(6) M(-1) s(-1) at I = 0.1 M). The results suggest that long-range Coulombic forces, affecting association rates, are not the main contributors to the observed differences in affinities, and that local interactions, affecting dissociation rates, may play an even greater role.  相似文献   

17.
Extracts of Valeriana officinalis have been used in folkloric medicine for its sedative, hypnotic, tranquilizer and anticonvulsant effects, and may interact with -aminobutyric acid (GABA) and/or benzodiazepine sites. At low concentrations, valerian extracts enhance [3H]flunitrazepam binding (EC50 4.13 × 10–10 mg/ml). However, this increased [3H]flunitrazepam binding is replaced by an inhibition at higher concentrations (IC50 of 4.82 × 10–1 mg/ml). These results are consistent with the presence of at least two different biological activities interacting with [3H]flunitrazepam binding sites. Valerian extracts also potentiate K+ or veratridine-stimulated release of radioactivity from hippocampal slices preloaded with [3H]GABA. Finally, inhibition of synaptosomal [3H]GABA uptake by valerian extracts also displays a biphasic interaction with guvacine. The results confirm that valerian extracts have effects on GABAA receptors, but can also interact at other presynaptic components of GABAergic neurons.  相似文献   

18.
K Gale 《Life sciences》1984,34(7):701-706
[3H]Gamma-vinyl-GABA, an irreversible inhibitor of GABA-transaminase, was used to label the enzyme in homogenates of rat brain. The binding procedure utilized was found to be specific for GABA-transaminase and linear with tissue obtained from several regions of rat brain up to concentrations of 8 micrograms protein/microliter. The specific binding was directly proportional to the activity of the enzyme measured in vitro and was completely inhibited by the GABA-transaminase inhibitors aminooxyacetic acid (100 microM) and 3-mercaptopropionic acid (1.0mM). The binding procedure was used to estimate the amount of active enzyme present in a homogenate of striatal tissue.  相似文献   

19.
20.
The binding to isolated hepatocyte plasma membranes of radioactively labelled inhibitors of microfilamentous and microtubular protein function ([3H]cytochalasin B and [3H]colchicine, respectively) was studied as one means of assessing the degree of association of these proteins with cell surface membranes. [3H]Cytochalasin B which behaved identically to the unlabelled compound with respect to binding to these membranes was prepared by reduction of cytochalasin A with NaB3H4. The binding was rapid, readily reversible, proportional to the amount of membrane and relatively insensitive to changes of pH or ionic strength. At 10(-6) M [3H]cytochalasin B, glucose of p-chloromercuribenzoate, an inhibitor of glucose transport inhibited binding by about 20%; treatment of membranes with 0.6 M KI which depolymerizes F actin to G actin caused about 60% inhibition of binding. These two types of inhibition were additive indicating two separate classes of binding sites, one associated with sugar transport and one with microfilaments. Filamentous structures with the diameter of microfilaments (50 A) were seen in electron micrographs of thin sections of the membranes. At concentrations greater than 10(-5) M [3H]cytochalasin B, binding was proportional to drug concentration, characteristic of non-specific adsorption or partitioning. Intracellular membranes of the hepatocyte also bound [3H]cytochalasin B, those of the smooth endoplasmic reticulum to a greater extent than plasma membranes. [3H]Colchicine bound to plasma membranes in proportion to the amount of membrane and at a rate compatible with binding to tubulin. However, other properties of the binding including effects of temperature, drug concentration and antisera against tubulin were different from those of binding to tubulin. Hence, no evidence was obtained for association of microtubular elements with these membranes. Despite this there appeared to be an interdependence between microtubule and microfilament inhibitors: vinblastine sulfate stimulated [3H]cytochalasin B binding and cytochalasin B stimulated 3H colchicine binding. [3H]Colchicine also bound to intracellular membranes, especially smooth microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号