首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of glucose by nongrowing cells of Lactococcus lactis strain FI7851, constructed from the wild-type L. lactis strain MG1363 by disruption of the lactate dehydrogenase (ldh) gene [Gasson, M.J., Benson, K., Swindel, S. & Griffin, H. (1996) Lait 76, 33-40] was studied in a noninvasive manner by 13C-NMR. The kinetics of the build-up and consumption of the pools of intracellular intermediates mannitol 1-phosphate, fructose 1,6-bisphosphate, 3-phosphoglycerate, and phosphoenolpyruvate as well as the utilization of [1-13C]glucose and formation of products (lactate, acetate, mannitol, ethanol, acetoin, 2,3-butanediol) were monitored in vivo with a time resolution of 30 s. The metabolism of glucose by the parental wild-type strain was also examined for comparison. A clear shift from typical homolactic fermentation (parental strain) to a mixed acid fermentation (lactate dehdydrogenase deficient; LDHd strain) was observed. Furthermore, high levels of mannitol were transiently produced and metabolized once glucose was depleted. Mannitol 1-phosphate accumulated intracellularly up to 76 mM concentration. Mannitol was formed from fructose 6-phosphate by the combined action of mannitol-1-phosphate dehydrogenase and phosphatase. The results show that the formation of mannitol 1-phosphate by the LDHd strain during glucose catabolism is a consequence of impairment in NADH oxidation caused by a highly reduced LDH activity, the transient production of mannitol 1-phosphate serving as a regeneration pathway for NAD+ regeneration. Oxygen availability caused a drastic change in the pattern of intermediates and end-products, reinforcing the key-role of the fulfilment of the redox balance. The flux control coefficients for the step catalysed by mannitol-1-phosphate dehydrogenase were calculated and the implications in the design of metabolic engineering strategies are discussed.  相似文献   

2.
Glucose metabolism of Pasteurella multocida was examined in resting cells in vivo using 13C NMR spectroscopy, in cell-free extracts in vitro using 31P NMR spectroscopy and using enzyme assays. The NMR data indicate that glucose is converted by the Embden-Meyerhof and pentose phosphate pathways. The P. multocida fructose 6-phosphate phosphotransferase activity (the key enzyme of the Embden-Meyerhof pathway) was similar to that of Escherichia coli. Nevertheless, and in contrast to that of E. coli, its activity was inhibited by alpha glycerophosphate. This inhibition is consistent with the very low fructose 6-phosphate phosphotransferase activity found in cell-free extracts of P. multocida using a spectrophotometric method. The dominant end products of glucose metabolism were mannitol, acetate and succinate. Under anaerobic conditions, P. multocida was able to constitutively produce mannitol from glucose, mannose, fructose, sucrose, glucose 6-phosphate and fructose 6-phosphate. We propose a new metabolic pathway in P. multocida where fructose 6-phosphate is reduced to mannitol 1-phosphate by fructose 6-phosphate reductase. Mannitol 1-phosphate produced is then converted to mannitol by mannitol 1-phosphatase.  相似文献   

3.
Manipulation of cellular metabolism to maximize the yield and rate of formation of desired products may be achieved through genetic modification. Batch fermentations utilizing glucose as a carbon source were performed for three recombinant strains of Saccharomyces cerevisiae in which the glucose phosphorylation step was altered by mutation and genetic engineering. The host strain (hxk1 hxk2 glk) is unable to grow on glucose or fructose; the three plasmids investigated expressed hexokinase PI, hexokinase PII, or glucokinase, respectively, enabling more rapid glucose and fructose phosphorylation in vivo than that provided by wild-type yeast.Intracellular metabolic state variables were determined by 31P NMR measurements of in vivo fermentations under nongrowth conditions for high cell density suspensions. Glucose consumption, ethanol and glycerol production, and polysaccharide formation were determined by 13C NMR measurements under the same experimental conditions as used in the 31P NMR measurements. The trends observed in ethanol yields for the strains under growth conditions were mimicked in the nongrowth NMR conditions.Only the strain with hexokinase PI had higher rates of glucose consumption and ethanol production in comparison to healthy diploid strains in the literature. The hexokinase PII strain drastically underutilized its glucose-phosphorylating capacity. A regulation difference in the use of magnesium-free ATP for this strain could be a possible explanation. Differences in ATP levels and cytoplasmic pH values among the strains were observed that could not have been foreseen. However, cytoplasmic pH values do not account for the differences observed among in vivo and in vitro glucose phosphorylation activities of the three recombinant strains.  相似文献   

4.
In glucose-limited aerobic chemostat cultures of a wild-type Saccharomyces cerevisiae and a derived hxk2 null strain, metabolic fluxes were identical. However, the concentrations of intracellular metabolites, especially fructose 1,6-bisphosphate, and hexose-phosphorylating activities differed. Interestingly, the hxk2 null strain showed a higher maximal growth rate and higher Crabtree threshold dilution rate, revealing a higher oxidative capacity for this strain. After a pulse of glucose, aerobic glucose-limited cultures of wild-type S. cerevisiae displayed an overshoot in the intracellular concentrations of glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-bisphosphate before a new steady state was established, in contrast to the hxk2 null strain which reached a new steady state without overshoot of these metabolites. At low dilution rates the overshoot of intracellular metabolites in the wild-type strain coincided with the immediate production of ethanol after the glucose pulse. In contrast, in the hxk2 null strain the production of ethanol started gradually. However, in spite of the initial differences in ethanol production and dynamic behaviour of the intracellular metabolites, the steady-state fluxes after transition from glucose limitation to glucose excess were not significantly different in the wild-type strain and the hxk2 null strain at any dilution rate.  相似文献   

5.
Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli that use the 6-phosphogluconate/phosphoketolase (6-PG/PK) pathway as their central metabolic pathway and are reportedly unable to grow on fructose as a sole carbon source. We isolated a variant PM1 strain capable of sporadic growth on fructose medium and observed its distinctive characteristics of fructose metabolism. The end product pattern was different from what is expected in typical group III lactobacilli using the 6-PG/PK pathway (i.e., more lactate, less acetate, and no mannitol). In addition, in silico analysis revealed the presence of genes encoding most of critical enzymes in the Embden-Meyerhof (EM) pathway. These observations indicated that fructose was metabolized via two pathways. Fructose metabolism in the PM1 strain was influenced by the activities of two enzymes, triosephosphate isomerase (TPI) and glucose 6-phosphate isomerase (PGI). A lack of TPI resulted in the intracellular accumulation of dihydroxyacetone phosphate (DHAP) in PM1, the toxicity of which caused early growth cessation during fructose fermentation. The activity of PGI was enhanced by the presence of glyceraldehyde 3-phosphate (GAP), which allowed additional fructose to enter into the 6-PG/PK pathway to avoid toxicity by DHAP. Exogenous TPI gene expression shifted fructose metabolism from heterolactic to homolactic fermentation, indicating that TPI enabled the PM1 strain to mainly use the EM pathway for fructose fermentation. These findings clearly demonstrate that the balance in the accumulation of GAP and DHAP determines the fate of fructose metabolism and the activity of TPI plays a critical role during fructose fermentation via the EM pathway in L. panis PM1.  相似文献   

6.
A beta-phosphoglucomutase (beta-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of beta-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h(-1), while the deletion of beta-PGM resulted in a maximum specific growth rate of 0.05 h(-1) on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as beta-glucose 1-phosphate in the medium. Furthermore, the beta-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of alpha-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the beta-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded beta-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

7.
1. The specific radioactivities of glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, UDP-glucose and glycogen, derived from [14C]gluocose, were determined in the normal and insulin-deficient (streptozotocin-diabetic and anti-insulin-serum-treated) perfused non-working and working rat heart. 2. The specific radioactivities of all glucose metabolities reached a plateau after about 10 min, except that for glycogen, which increased slightly but steadily over the whole observation period of 30min. 3. The specific radio-activities of fructose 6-phosphate, UDP-glucose and glycogen were slignificantly lower in the streptozotocin-diabetic heart than in the normal heart. 4. Mechanical work in the normal rat heart increased the specific radioactivities of glucose 1-phosphate, UDP-glucose and glycogen, but had little or no effect on those of gluose 6-phosphate and fructose 6-phosphate. 5. In the normal heart insulin strongly increased the specific radioactivities of all gluocse metabolites under all conditions tested. The maximum values achieved in the normal working heart in the presence of insulin were only about 15-20% above those in the normal non-working heart in the presence of insulin for the phosphorylated intermediates and about 40% above for glycogen. 6. In the streptozotocin-diabetic heart, work restored the specific radioactivities of all glucose metabolities to about normal values. 7. In the streptozotocin-diabetic heart insulin strongly increased the specific radioactivities of the direct glycogen precursors glucose 1-phosphate and UDP-glucose; the effect of insulin on glucose 6-phosphate and fructose 6-phosphate was less marked. These results confirm previous findings that the primary metabolic lesion in diabetic heart muscle is a defect of glycogen synthesis. The specific radioactivity of glycogen itself was increased sixfold. 8. Under all conditions tested the specific radioactivity of glucose 1-phosphate was always found to be higher than that of glucose 6-phosphate. This indicated either compartmentation of a small but metabolically very active pool of glucose 6-phosphate, or the existence of a hitherto unknown pathway of metabolism in which glucose 1-phosphate is the primary reaction product. For a number of reasons the authors prefer the first explanation, which could also account for the observation that in the perfused normal working and non-working heart the specific radioactivity of fructose 6-phosphate was always found to be higher than that of glucose 6-phosphate. This difference disappeared or was reversed in the rat hearts rendered insulin-insufficent by either streptozotocin or anti-insulin treatment.  相似文献   

8.
13C NMR was used to study the pattern of label incorporation from [2-13C]acetate into trehalose during sporulation in Saccharomyces cerevisiae. A wild-type strain and a strain homozygous for the zwf1 mutation (which affects glucose-6-phosphate dehydrogenase) were used. In the wild-type it was possible to deduce the cycling of glucose 6-phosphate around the hexose monophosphate pathway whilst in the mutant strain this did not occur. The requirement of the hexose monophosphate pathway for providing NADPH for fatty acid biosynthesis was examined using 13C NMR and GC/MS. The wild-type strain produced a typical profile of fatty acids with palmitoleic acid being the most abundant whereas the mutant contained only one-quarter the amount of total fatty acid. As zwf1 homozygous diploids are able to sporulate this indicates that the large amount of fatty acid biosynthesis observed in sporulation of wild-type strains is not essential to the process.  相似文献   

9.
Summary High resolution 13C Nuclear Magnetic Resonance (NMR) spectroscopy has been employed to determine the chemical composition of the unknown major products in a sucrose or fructose plus glucose fermentation to ethanol by the bacterium Zymmonas mobilis. When grown on these sugars Z.mobilis was found to produce significant amounts of sorbitol, up to 43 g·l-1 for strain ZM31 when grown on 250 g·l-1 sucrose.The production of sorbitol and decrease of glucose, fructose, or sucrose was followed throughout batch fermentations by NMR and HPLC. Sorbitol was shown to be derived only from fructose by [14C]-feeding experiments. Additionally 31P NMR spectroscopy was utilized to determine the concentrations of both glucose 6-phosphate and fructose 6-phosphate relative to their respective concentrations in Z.mobilis cells fermenting glucose or fructose alone.It is suggested that free glucose inside the cell inhibits fructokinase. Free intracellular fructose may then be reduced to sorbitol via a dehydrogenase type enzyme. Attempts to grow Z.mobilis on sorbitol were unsuccessful, as were experiments to induce growth via mutagenesis.This work was supported in part by the National Energy Research, Development and Demonstration Council of Australia  相似文献   

10.
It was found that fructose 1,6-diphosphate, the main intermediate of glycolysis, was able to act as a coenzyme of yeast phosphoglucomutase reaction. The mechanism of the coenzymatic activity of fructose 1,6-diphosphate was studied. It was indicated in the fructose 1,6-diphosphate dependent reaction that glucose 1,6-diphosphate was formed by the phosphate-transfer of fructose 1,6-diphosphate to glucose 1-phosphate in the first step, and in the second step the conversion of glucose 1-phosphate to glucose 6-phosphate, the original mutase reaction, occurred in the presence of glucose 1,6-diphosphate. The kinetic constants in the reaction of the first step were determined from the time courses of the fructose 1,6-diphosphate dependent reaction.  相似文献   

11.
Abstract Sugar phosphates are formed in cell-free extracts of Streptomyces aureofaciens RIA57 from glucose or fructose in the presence of phosphoenolpyruvate. In contrast to the phosphorylation by adenosine 5'-triphosphate the kinetics of formation of glucose 6-phosphate via phosphoenolpyruvate (PEP) is nonlinear. The product of fructose phosphorylation (only fructose 6-phosphate was determined by paper chromatography) and the absence of 1-phosphofructokinase indicate that fructose metabolism in S. aureofaciens does not proceed via the phosphoenolpyruvate:sugar phosphotransferase system (PTS).  相似文献   

12.
The sensitivity of the control of glycolysis was studied in the wild-type (WT) strain CEN.PK122 and in isogenic catabolite-repression mutants growing in carbon-limited, aerobic chemostat cultures at different dilution rates, D. Based on a model of glycolysis in which the glucose transport step was considered reversible and inhibited by glucose 6-phosphate (G6P), the matrix method of metabolic control analysis was applied. In the present work, we report that the control of glycolysis was significantly distributed between the glucose uptake, hexokinase, and phosphofructokinase steps. The flux control properties were sensitive to the glucose gradient through the membrane and the extent of inhibition of the transport by G6P as parameters of the glucose-uptake kinetics in all strains tested. In the WT strain at low and high D, most of the control was exerted by the phosphofructokinase (PFK)-catalyzed step. In the cat1 mutant, the step catalyzed by PFK was the most rate controlling while in the cat3 strain, the control was shared between the PFK, hexokinase (HK), and glucose transport steps. On the other hand, the mig1 mutant exhibited high control by the glucose transporter depending on the glucose gradient across the membrane. The results obtained are discussed in terms of the dependence upon the type of metabolism displayed by yeast and the kinetics of the sugar transport step.  相似文献   

13.
The biosynthesis of alginate has been studied extensively due to the importance of this polymer in medicine and industry. Alginate is synthesized from fructose-6-phosphate and thus competes with the central carbon metabolism for this metabolite. The alginate-producing bacterium Pseudomonas fluorescens relies on the Entner-Doudoroff and pentose phosphate pathways for glucose metabolism, and these pathways are also important for the metabolism of fructose and glycerol. In the present study, the impact of key carbohydrate metabolism enzymes on growth and alginate synthesis was investigated in P. fluorescens. Mutants defective in glucose-6-phosphate dehydrogenase isoenzymes (Zwf-1 and Zwf-2) or glucose dehydrogenase (Gcd) were evaluated using media containing glucose, fructose, or glycerol. Zwf-1 was shown to be the most important glucose-6-phosphate dehydrogenase for catabolism. Both Zwf enzymes preferred NADP as a coenzyme, although NAD was also accepted. Only Zwf-2 was active in the presence of 3 mM ATP, and then only with NADP as a coenzyme, indicating an anabolic role for this isoenzyme. Disruption of zwf-1 resulted in increased alginate production when glycerol was used as the carbon source, possibly due to decreased flux through the Entner-Doudoroff pathway rendering more fructose-6-phosphate available for alginate biosynthesis. In alginate-producing cells grown on glucose, disruption of gcd increased both cell numbers and alginate production levels, while this mutation had no positive effect on growth in a non-alginate-producing strain. A possible explanation is that alginate synthesis might function as a sink for surplus hexose phosphates that could otherwise be detrimental to the cell.  相似文献   

14.
Glucose stimulation of islets is coupled with the rapid intracellular release of myo-inositol 1,4,5-trisphosphate (IP3) and arachidonic acid which in turn mobilize Ca2+ stored in the endoplasmic reticulum (ER). The metabolism of glucose is required for insulin secretion although the link between glucose metabolism and the cellular events resulting in insulin release is unknown. In digitonin-permeabilized islets, glucose 6-phosphate (0.5-4 mM) increased significantly the ATP-dependent Ca2+ content of the ER at a free Ca2+ concentration of 1 microM. At 0.2 microM free Ca2+, glucose 6-phosphate (2-10 mM) had a smaller effect. Glucose, phosphate, mannose 6-phosphate, and fructose 1,6-diphosphate had no effect on the ATP-dependent Ca2+ content of the ER. Glucose 1-phosphate and fructose 6-phosphate also increased ATP-dependent Ca2+ content of the ER, presumably due to conversion to glucose 6-phosphate by islet phosphoglucomutase and phosphoglucoisomerase, respectively. The glucose 6-phosphate increase in the ATP-dependent Ca2+ content of the ER was shown to be mediated by glucose 6-phosphatase localized to the ER. Both arachidonic acid (10 microM) and the Ca2+ ionophore A23187 (2 microM) mobilized Ca2+ stored in the ER by glucose 6-phosphate. However, IP3-induced (10 microM) Ca2+ release from the ER was abolished in the presence of glucose 6-phosphate (0.5-10 mM). We propose that glucose 6-phosphate could provide a regulatory link between glucose metabolism and intracellular Ca2+ regulation by augmenting Ca2+ sequestered in the ER as well as attenuating IP3-induced Ca2+ release. Thus, glucose 6-phosphate would serve as an "off" signal leading to a decrease in intracellular Ca2+ when both the free Ca2+ and glucose 6-phosphate concentrations have increased following glucose stimulus.  相似文献   

15.
ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 A, b = 93.79 A, and c = 140.29 A (alpha = beta = gamma = 90 degrees ) and space group I 222. The A. tumefaciens ADPGlc PPase model was refined to 2.1 A with an R factor = 22% and R free = 26.6%. The model consists of two domains: an N-terminal alphabetaalpha sandwich and a C-terminal parallel beta-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.  相似文献   

16.
The phosphorylation of glucose and fructose is an important step in regulating the supply of hexose sugars for biosynthesis and metabolism. Changes in leaf hexokinase (EC 2.7.1.1) activity and in vivo metabolite levels were examined during drying in desiccation-tolerant Sporobolus stapfianus and Xerophyta viscosa. Leaf hexokinase activity was significantly induced from 85% to 29% relative water content (RWC) in S. stapfianus and from 89% to 55% RWC in X. viscosa. The increase in hexokinase corresponded to the region of sucrose accumulation in both species, with the highest activity levels coinciding with region of net glucose and fructose removal. The decline of hexose sugars and accumulation of sucrose in both plant species was not associated with a decline in acid and neutral invertase. The increase in hexokinase activity may be important to ensure that the phosphorylation and incorporation of glucose and fructose into metabolism exceeded production from potential hydrolytic activity. Total cellular glucose-6-phosphate (Glc-6-P) and fructose-6-phosphate (Fru-6-P) levels were held constant throughout dehydration. In contrast to hexokinase, fructokinase activity was unchanged during dehydration. Hexokinase activity was not fully induced in leaves of S. stapfianus dried detached from the plant, suggesting that the increase in hexokinase may be associated with the acquisition of desiccation-tolerance.  相似文献   

17.
Glucose metabolism in mouse pancreatic islets   总被引:35,自引:22,他引:13  
1. Rates of glucose oxidation, lactate output and the intracellular concentration of glucose 6-phosphate were measured in mouse pancreatic islets incubated in vitro. 2. Glucose oxidation rate, measured as the formation of (14)CO(2) from [U-(14)C]glucose, was markedly dependent on extracellular glucose concentration. It was especially sensitive to glucose concentrations between 1 and 2mg/ml. Glucose oxidation was inhibited by mannoheptulose and glucosamine but not by phlorrhizin, 2-deoxyglucose or N-acetylglucosamine. Glucose oxidation was slightly stimulated by tolbutamide but was not significantly affected by adrenaline, diazoxide or absence of Ca(2+) (all of which may inhibit glucose-stimulated insulin release), by arginine or glucagon (which may stimulate insulin release) or by cycloheximide (which may inhibit insulin synthesis). 3. Rates of lactate formation were dependent on the extracellular glucose concentration and were decreased by glucosamine though not by mannoheptulose; tolbutamide increased the rate of lactate output. 4. Islet glucose 6-phosphate concentration was also markedly dependent on extracellular glucose concentration and was diminished by mannoheptulose or glucosamine; tolbutamide and glucagon were without significant effect. Mannose increased islet fructose 6-phosphate concentration but had little effect on islet glucose 6-phosphate concentration. Fructose increased islet glucose 6-phosphate concentration but to a much smaller extent than did glucose. 5. [1-(14)C]Mannose and [U-(14)C]fructose were also oxidized by islets but less rapidly than glucose. Conversion of [1-(14)C]mannose into [1-(14)C]glucose 6-phosphate or [1-(14)C]glucose could not be detected. It is concluded that metabolism of mannose is associated with poor equilibration between fructose 6-phosphate and glucose 6-phosphate. 6. These results are consistent with the idea that glucose utilization in mouse islets may be limited by the rate of glucose phosphorylation, that mannoheptulose and glucosamine may inhibit glucose phosphorylation and that effects of glucose on insulin release may be mediated through metabolism of the sugar.  相似文献   

18.
19.
Site-directed mutagenesis was used to explore the role of Lys-195 in ADP-glucose pyrophosphorylase from Escherichia coli. This residue, which is conserved in every bacterial and plant source sequenced to date, was originally identified as a potential catalytic site residue by covalent modification studies. Mutation of Lys-195 to glutamine produces an enzyme whose Km for glucose 1-phosphate is 600-fold greater than that measured for the wild-type enzyme. The effect on glucose 1-phosphate is very specific since kinetic constants measured for ATP, Mg2+, and the allosteric activator, fructose 1,6-bisphosphate, are unchanged relative to those measured for the wild-type enzyme. Furthermore, the catalytic rate constant, Kcat, for the glutamine mutant is similar to that of the wild-type enzyme. Taken together, the results suggest a role for Lys-195 in binding of glucose 1-phosphate and exclude its role as a participant in the rate-determining step(s) in the catalytic reaction mechanism. To further study the effect of charge, shape, size, and hydrophobicity of the amino acid residue at position 195, a series of mutants were prepared including arginine, histidine, isoleucine, and glutamic acid. In every case, the kinetic constants measured for ATP, Mg2+, and fructose 1,6-bisphosphate were similar to wild-type constants, reinforcing the notion that this residue is responsible for a highly localized effect at the glucose 1-phosphate-binding site and also suggesting that the protein can accommodate a wide range of substitutions at this position without losing its global folding properties. Thermal stability measurements corroborate this finding. The mutations did, however, produce a range of glucose 1-phosphate Km values from 100- to 10,000-fold greater than wild-type, which indicate that both size and charge properties of lysine are essential for proper binding of glucose 1-phosphate at the catalytic site. AMP binding was also affected by the nature of the mutation at position 195. A model for glucose 1-phosphate, ATP, and AMP binding is presented.  相似文献   

20.
1. A mutant of Escherichia coli, devoid of phosphopyruvate synthetase, glucosephosphate isomerase and 6-phosphogluconate dehydrogenase activities, grew readily on gluconate and inducibly formed an uptake system for gluconate, gluconate kinase and 6-phosphogluconate dehydratase while doing so. 2. This mutant also grew on glucose 6-phosphate and inducibly formed 6-phosphogluconate dehydratase; however, the formation of the gluconate uptake system and gluconate kinase was not induced under these conditions. 3. The use of the Entner–Doudoroff pathway for the dissimilation of 6-phosphogluconate, derived from either gluconate or glucose 6-phosphate, by this mutant was also demonstrated by the accumulation of 2-keto-3-deoxy-6-phosphogluconate (3-deoxy-6-phospho-l-glycero-2-hexulosonate) from both these substrates in a similar mutant that also lacked phospho-2-keto-3-deoxygluconate aldolase activity. 4. Glucose 6-phosphate inhibits the continued utilization of fructose by cultures of the mutants growing on fructose, as it does in wild-type E. coli. 5. The mutants do not use glucose for growth. This is shown to be due to insufficiency of phosphopyruvate, which is required for glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号