首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 220 samples comprising cereals, cereal byproducts, corn plants and corn silage as well as non-grain based feedstuffs was randomly collected during 2000 and 2001 from sources located in Germany and analysed for 16 Fusarium toxins. The trichothecenes scirpentriol (SCIRP), 15-monoacetoxyscirpenol (MAS), diacetoxyscirpenol (DAS), T-2 tetraol, T-2 triol, HT-2 and T-2 toxin (HT-2, T-2), neosolaniol (NEO), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivealenol (15-ADON), nivalenol (NIV) and fusarenon-X (FUS-X) were determined by gas chromatography/mass spectrometry. Zearalenone (ZEA) and α- and β-zearalenol (α- and β-ZOL) were analysed by high performance liquid chromatography with fluorescence and UV-detection. Detection limits ranged between 1 and 19 μg/kg. Out of 125 samples of a group consisting of wheat, oats, corn, corn byproducts, corn plants and corn silage only two wheat samples did not contain any of the toxins analysed. Based on 125 samples the incidences were at 2–11% for DAS, NEO, T-2 Triol, FUS-X, α- and β-ZOL, at 20–22% for SCIRP, MAS, T-2 tetraol and 3-ADON, at 44–74% for HT-2, T-2, 15-ADON, NIV and ZEA, and at 94% for DON. Mean levels of positive samples were between 6 and 758 μg/kg. Out of 95 samples of a group consisting of hay, lupines, peas, soya meal, rapeseed meal and other oilseed meals, 64 samples were toxin negative. DAS, T-2 triol, NEO and FUS-X were not detected in any sample. The incidences of DON and ZEA were at 14 and 23% respectively, those of the other toxins between 1–4%, mean levels of positive samples were between 5 and 95 μg/kg.  相似文献   

2.
A total of 120 freshly harvested wheat samples from the 2004 season in nine locations from Northern Buenos Aires Province, Argentina, were analysed for trichothecene natural occurrence and associated mycoflora, and for determining the influence of commonly used fungicide field treatment and the cultivar type on trichothecene contamination. The trichothecenes T-2 tetraol, T-2 triol, HT-2 and T-2 toxin (HT-2, T-2), diacetoxyscirpenol (DAS), nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) were analysed by gas chromatography and electron capture detection. Detection limits ranged from 4 to 20 μg/kg. The isolation frequencies of species were calculated. Alternaria alternata, Fusarium graminearum, Fusarium poae and Fusarium semitectum were the predominant fungal species identified as endogenous mycoflora. The type of cultivar and the fungicide field treatment did not affect significantly the trichothecene contamination. The trichothecenes type A detected were HT-2 and T-2 triol toxins and the type B were DON, NIV and 3-ADON. Based on 120 samples the incidences were 21.7% for 3-ADON, 22.5% for HT-2, 27.5% for T-2 triol and 85% for DON. NIV was confirmed in one sample. Mean levels of trichothecene positive samples were between 7 and 2788 μg/kg.  相似文献   

3.
A total of 237 commercially available samples of cereal-based foods including bread and related products, noodles, breakfast cereals, baby and infant foods, rice and other foods were randomly collected in southwest Germany during the first six months of 1998. The trichothecenes deoxynivalenol (DON), 3-and 15-acetyl-deoxynivalenol (3-,15-ADON), nivalenol (NIV), fusarenon-X (FUS-X), T-2 toxin (T-2) and HT-2 toxin (HT-2) were determined by gaschromatography/mass spectrometry following clean-up by a two stage solid-phase extraction. Detection limits ranged between 2 and 12 g/kg. Based on all samples, the incidence of DON, HT-2, T-2, 3-ADON,15-ADON, and NIV was at 71, 18, 4, 4, 4 and 2%, respectively; the average contents in positive samples were at 103, 16, 14, 17, 24 and 109 g/kg,respectively. Fus-X was not detected in any sample. A lower (P < 0.05) DON content was found in baby and infant foods as well as in cookies and cakes compared to bread. Overall, based on the incidence and level of all six toxins, the degree of contamination was lowest in baby and infant foods. Foods produced from either white or whole grain flour did not differ (P > 0.05) with regard to the incidence and level of DON. In foods produced from cereals of organic production both the incidence and median content of DON was lower compared to conventional production. Zearalenone, - and -zearalenol were determined by high performance liquid chromatography in 20 selected samples, mostly baby and infant foods. These toxins were not present in excess of the detection limit in any sample.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
Twenty-one batches of fixed-formula rodent diets from three feed manufacturers were tested for the presence of five mycotoxins: deoxynivalenol (DON), nivalenol (NIV), HT-2 toxin, T-2 toxin and ochratoxin A (OTA). Five batches were also tested for the presence of zearalenone (ZEN) and six batches for aflatoxins. Detectable levels of DON (up to 298 microg/kg), NIV (up to 118 microg/kg), OTA (up to 3.1 microg/kg) or ZEN (up to 26.7 microg/kg) were found in samples from all manufacturers. Three batches contained two (DON or NIV and OTA or ZEN) and one batch contained three (DON, OTA and ZEN) different mycotoxins. Aflatoxins, T-2 and HT-2 were not detected in any of the batches. The concentrations of mycotoxins detected in the feed were low, but indicated that feed ingredients, probably the cereal ingredients, were contaminated by mycotoxins. Since mycotoxins are known to have toxic and/or immunosuppressive effects, non-contaminated ingredients should be used for production of laboratory animal feed. The results imply that an improved quality control of ingredients used for laboratory rodent feed should be implemented.  相似文献   

5.
A total of 53, 54, 57, 52 and 60 wheat samples for feed use were collected randomly after the 1989, 1990, 1991, 1992 and 1993 crops, respectively, from farms in an area of southwest Germany. Deoxynivalenol (DON), 3‐ and 15‐acetyldeoxynivalenol (3‐, 15‐ADON), nivalenol (NIV), HT‐2 toxin (HT‐2), T‐2 toxin (T‐2), diacetoxyscirpenol (DAS), and fusarenon‐X (FUS‐X) were determined by gas chromatography, combined with mass selective detection (GC‐MS), zearalenone (ZEA), α‐ and β‐zearalenol (α‐ß‐ZOL) were determined by HPLC. DON was the major toxin, with incidences at 77 to 93% and mean contents at 167 to 735 μg/kg. In contrast, incidences of ZEA, 3‐ADON, NIV, HT‐2, and T‐2 were at 13 to 37%, 10 to 44%, 15 to 67%, 0 to 11%, and 0 to 12%, respectively, with mean contents in positive samples between 2 and 73 μg/kg, except for 948 μg/kg 3‐ADON in samples from 1993. 15‐ADON and FUS‐X were assayed in samples from 1991, 1992 and 1993. 15‐ADON was found in 0 to 11% of samples at mean levels ≤ 17 μ/kg, DAS, α‐ and β‐ZOL, and FUS‐X were not detected in any sample. Over the years, incidences and levels of toxins remained constant, decreased or increased, with most differences between years being slight and insignificant. The risk for livestock due to DON, HT‐2 and ZEA was estimated based on maximum tolerated levels recommended for these toxins in some countries.  相似文献   

6.
Fifty-nine samples of barley and barley products were analysed for 18 trichothecene mycotoxins by a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (detection limits 0.062-0.70 μg/kg) after sample extract clean-up on MycoSep®-226 columns. The samples were collected in 2009 from barley processing facilities (mills and malt houses) and at wholesale and retail stage from the Bavarian market. The predominant toxins were T-2 toxin (T-2), HT-2 toxin (HT-2) and deoxynivalenol (DON). For all samples, the mean levels of T-2 and HT-2 were 3.0 μg/kg and 6.8 μg/kg with rates of contamination of 63% and 71%, respectively. The maximum values were 40 μg/kg for T-2 and 47 μg/kg for HT-2. The rate of contamination with DON was high (95%) with a low mean level of 23 μg/kg. The DON levels ranged between 3.4 to 420 μg/kg. For T-2 tetraol, a mean level of 9.2 μg/kg and a maximum level of 51 μg/kg with a rate of contamination of 71% were determined. NIV was detected in 69% of the samples with a mean level of 11 μg/kg and a maximum level of 72 μg/kg. Other type A and B trichothecenes were detected only in traces. Type D trichothecenes, fusarenon-X, verrucarol and 4,15-diacetylverrucarol were not detected in any sample. Winter barley and malting barley were the most contaminated groups of all samples in this study. In malting barley, the highest levels of contamination with type A trichothecenes were found. In contrast, winter barley showed the highest contamination with type B trichothecenes. The lowest mycotoxin concentrations were found in de-hulled and naked barley and in pearl barley.  相似文献   

7.
Wheat for feed use (84 samples) was collected after harvest from 79 farms in a southwestern part of Germany (Baden-Wuerttemberg). The 1987 crop year was characterized by heavy rainfall in the summer months. The internal mycoflora of wheat samples was primarily fusaria, and storage fungi were rarely present. TheFusarium toxins, zearalenone (ZON), - and -zearalenol (,-ZOL), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), nivalenol (NIV), T-2 Toxin (T-2), HT-2 toxin (HT-2) and diacetoxyscirpenol (DAS) were analysed by gas chromatography with mass selective detection (detection limit: 1–3 µg/kg). Each of the samples contained at least one of theFusarium toxins examined except DAS. DON, ZON, 3-AcDON, NIV, T-2, HT-2 and -ZOL were detected in 96%, 80%, 59%, 26%, 26%, 7% and 5% of samples, with an average of 1632, 178, 7, 9, 82, 10 and 23 µg/kg, and a maximum of 20538, 8036, 18, 32, 249, 20 and 71 µg/kg, respectively. -ZOL (12 µg/kg) was found in one sample with -ZOL (71 µg/kg). One, two, three, four, five and sixFusarium toxins were detected in 6%, 27%, 37%, 23%, 4%, and 4% of total samples, respectively. The most frequent combination was that of ZON with DON and 3-AcDON, followed by the combinations ZON/DON and ZON/DON/3-AcDON/NIV in 22, 20, and 11% of total samples, respectively.Abbreviations 3-AcDON 3-Acetyldeoxynivalenol - DAS Diacetoxyscirpenol - DON Deoxynivalenol - HT-2 HT-2 toxin - NIV Nivalenol - T-2 T-2 toxin - -ZOL -Zearalenol - -ZOL -Zearalenol - ZON Zearalenone  相似文献   

8.
Wheat from two cultivars with contrasting characteristics were harvested in ten experimental plots located in wheat producing areas of the State of São Paulo, Brazil. The samples (10 of each cultivar) were analyzed by a gaschromatographic method for deoxynivalenol (DON), nivalenol (NIV), diacetoxyscirpenol (DAS), toxins T-2 (T-2) and HT-2, T-2 tetraol, T-2 triol, and by a thin-layer chromatographic method for zearalenone (ZEN), aflatoxins B1, B2, G1, G2, ochratoxin A and sterigmatocystin. No mycotoxins were detected in 13 samples. DON was found in four samples (0.47–0.59 µg/g), NIV in three samples (0.16–0.40 µg/g), T-2 in two samples (0.40, 0.80 µg/g), DAS in one sample (0.60 µg/g), and ZEN in three samples (0.04–0.21 µg/g). The wheat samples were also examined for the incidence of fungi.Alternaria, Drechslera, Epicoccum andCladosporium were the prevailing genera. Among theFusarium spp.,F. semitectum was present in 19 samples andF. moniliforme in 18 samples. NoF. graminearum was isolated in the samples.Abbreviations DAS diacetoxyscirpenol - DON deoxynivalenol - NIV nivalenol - T-2 T-2 toxin - ZEN zearalenone  相似文献   

9.
Two corn powder samples implicated in the human food poisoning that occurred in Guangxi province in 1989, and eight wheat and two barley samples linked to an episode that involved about 130,000 people in gastrointestinal disorders in Anhui province in 1991 were analyzed for trichothecenes including deoxynivalenol (DON), nivalenol (NIV) and their esters, zearalenone (ZEA) and fumonisins (FMs) by gas chromatography/mass spectroscopy and high performance liquid chromatography, and T-2 toxin by enzyme-linked immunosorbent assays. DON was detected in all samples as a major trichothecene (16-51,450 microg kg(-1)), and NIV was in one corn, one barley and all wheat at relatively low levels (10-6935 microg kg(-1)). ZEA was found in all corn and barley, and six wheat samples (46-3079 microg kg(-1)). In addition, 3-acetyl-DON (2544 microg kg(-1)) and 15-acetyl-DON (2537 microg kg(-1)) were detected separately in one corn and one wheat sample. The highest levels of these mycotoxins were found in one wheat sample associated with the human intoxication in Anhui province. FMs in corn were below 1000 microg kg(-1). Risks of DON and ZEA on the people who consumed the causative cereals were assessed.  相似文献   

10.
We have developed and tested an enzyme-linked immunosorbent assay system for individual measurement of deoxynivalenol, nivalenol, and T-2 + HT-2 toxin using monoclonal antibodies for 3,4,15-triacetyl-nivalenol, for both 3,4,15-triacetyl-nivalenol and 3,15-diacetyl-deoxynivalenol, and for acetyl-T-2 toxin. The assay system comprised three kits (desinated the DON + NIV kit, the NIV kit, and the T-2 + HT-2 kit). The practical performance of the enzyme-linked immunosorbent assay system was assessed by assaying trichothecene mycotoxins in wheat kernels. The enzyme-linked immunosorbent assay system meets all the requirements for use in a routine assay in terms of sensitivity (detection limit: deoxynivalenol 80 ng/g, nivalenol 80 ng/g, T-2 toxin 30 ng/g), reproducibility (total coefficient of variation: 1.9-6.2%), accuracy (recovery: 93.8-112.0%), simplicity and rapidity (time required: <2 h), mass handling (>42 samples/assay), and a good correlation with gas chromatography-mass spectrometry (r=0.9146-0.9991). Components derived from the wheat extract did not interfere with the assay kits. The enzyme-linked immunosorbent assay system is a useful alternative method to gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, or liquid chromatography-ultraviolet absorption for screening cereals and foods for trichothecene mycotoxin contamination.  相似文献   

11.
A colorimetric MTT (tetrazolium salt) cleavage test was used to evaluate cytotoxicity of twenty-three Fusarium mycotoxins on two cultured human cell lines (K-562 and MIN-GL1) as well as their inhibitory effect on proliferation of phytohemagglutinin-stimulated human peripheral blood lymphocytes. The values of 50% inhibition of lymphocyte blastogenesis were very close to the 50% cytotoxic doses observed with the more sensitive cell line (MIN-GL1). T-2 toxin was the most cytotoxic with CD50 and ID50 values less than 1 ng/ml. Type A trichothecenes were the most cytotoxic followed by the type B trichothecenes; the non-trichothecenes were the least cytotoxic. The MTT cleavage test, in conjunction with cell culture, is a simple and rapid bioassay to evaluate cytotoxicity and immunotoxicity of Fusarium mycotoxins.Abbreviations Ac acetyl - ACU acuminatin - DAS diacetoxyscirpenol - DON deoxynivalenol - FUS fusarenon-X - HT-2 HT-2 toxin - MC mononuclear cell - MTT 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide - NEO neosolaniol - NIV nivalenol - NT-1 4,8-diacetoxy T-2 tetraol - PBS phosphate buffered saline - TAT-2T tetraacetoxy T-2 tetraol - T-2 T-2 toxin  相似文献   

12.
Heads of 12 barley genotypes (8 cultivars and 4 lines) were inoculated with conidial suspension of the following single isolates: F. culmorum no. 3, F. graminearum no. 122 and F. sporotrichioides no. ATCC 62 360. The number of kernels per head. 1000 Kernel weight and yield have been calculated for each genotype. Seed samples collected at harvest were analysed for each genotype. Seed samples collected at harvest were analysed for several trichothecene mycotoxins and zearalenone.The mycotoxin concentrations (mg/kg) in barley kernels inoculated with F. graminearum were as follows. deoxynivalenol (DON) 0.1 to 5.4 (av. 2.3). 3-acetyldeoxy-nivalenol (3-AcDON) 0.0–0.2 (av. 0.1), 15-acetyldeoxynivalenol (15-AcDON) 0.0–0.7 (av.0.2), nivalenol (NIV) 0.0–0.8 (av. 0.3). zearalenone (ZEA) 0.0–0.1 (av. 0.0); F. culmorum: DON 0.6 to 12.0 (av. 5.3), 3-AcDON 0.1 to 1.0 (av. 0.6). 15-AcDON nd. NIV 0.1–0.7 (av. 0.3). ZEA 0.1–0.5 (av. 0.2). F. sporotrichioides T-2 toxin 2.4–13.9 (av. 6.0), HT-2-toxin 0.1–0.8 (av.0.3) and neosolaniol 0.2–1.5 (av.0.7).  相似文献   

13.
Toxicity toA. salina, of the Fusarium metabolites: deoxynivalenol (DON), its acetylated derivatives (3- and 15-AcDON), zearalenone (ZON), neosolaniol (NEO), nivalenol (NIV), T-2, HT-2 toxins, has been examined and compared with toxicity of extracts of barley kernels (8 cultivars and 4 lines) inoculated withFusarium culmorum, F. graminearum andF. sporotrichioides respectively. Estimated LC50 values were expressed as relative toxicity (RT) in mg DON/kg for samples inoculated withF. culmorum, F. graminearum or in mg T-2/kg forF. sporotrichioides inoculations. Toxicity of extracts of the same genotype/line kernels was compared among different pathogens used for inoculation and differences in Fusarium head blight susceptibility of different genotypes/lines inoculated with the sameFusarium strain were found. Significant correlation between toxicity of extracts (LC50, RT) and toxic metabolites concentration was found ( $\bar r = 0.82$ ; P = 0.01). Bioassays withA. Salina offer a fast, easy and inexpensive method to examine cereal genotypes susceptibility to Fusarium head blight and mycotoxins accumulation in kernels.  相似文献   

14.
Fusarium graminearum clade species are among the main causative agents of Gibberella ear rot (GER) in maize and responsible for the various trichothecene mycotoxins accumulated in contaminated maize grains. In this study, a total of 620 isolates from diseased maize ears collected from 59 districts in 19 provinces throughout China, previously identified morphologically as Fusarium graminearum clade, was genetically characterized at the species level based on SCAR (Sequence Characterized Amplified Region) and for their potential capability of mycotoxin production using the genetic chemotyping assay. The results showed that 359 isolates were F. asiaticum (SCAR 5), which consisted of 97% nivalenol (NIV)‐chemotypes, 0.8% 3‐acetyldeoxynivalenol (3‐ADON)‐producing isolates and 2.2% 15‐acetyldeoxynivalenol (15‐ADON) producers, whereas the remaining 261 isolates were identified as F. graminearum sensu stricto (SCAR 1), all of which produced 15‐ADON mycotoxins. This high proportion of NIV producers present in F. asiaticum is different from the chemotype patterns in F. asiaticum populations isolated from wheat and barley, where DON and its acetylated chemotypes were the predominant mycotoxins. Moreover, the majority of NIV producers (59.1%) and all the 3‐ADON‐producing strains were derived from the warmer regions in southern China, whereas most of the 15‐ADON‐producing strains (78.4%) were isolated from the colder regions in northern China. Our study is the first report of NIV chemotypes of F. asiaticum and 15‐ADON chemotypes of F. graminearum sensu stricto that were associated with the GER of maize in China.  相似文献   

15.
In 1985 82 samples of feed and food grain were analyzed for trichothecenes deoxynivalenol (DON), nivalenol (NV), diacetoxyscirpenol (DAS), T-2 toxin, HT-2 toxin and fusarenon-X (F-X). Trichothecenes were found in 77 of these samples. The highest amounts were DON 6300 ug/kg and DAS 1680 ug/kg.In 1986, in a corresponding study of 113 samples, trichothecenes were found in 110 samples. A new trichothecene in Finland, 3-acetyldeoxynivalenol (3-AcDON), was identified in 35 of these samples in concentration of 2–211 ug/kg.Analyzing methods were gas chromatography and GC-mass spectrometry. It is characteristic of the feed samples suspected of causing outbreaks in animals in Finland that several trichothecenes are often found in the same sample. As an example of this is a poultry feed with following results: DON 33 ug/kg, 3-AcDON 21 ug/kg, DAS 45 ug/kg, T-2 toxin 40 ug/kg, HT-2 toxin 12 ug/kg.  相似文献   

16.
Samples (n=106) of maize and maize products were analysed for 13 trichothecene toxins and zearalenone (ZON). All 14 toxins examined were detected, although with varying frequency. Cooccurrence of two or more toxins was observed in 96% of samples. The toxins of the scirpenol group scirpentriol, 15-monoacetoxyscirpenol and diacetoxyscirpenol were detected in 14, 27 and 3% of the samples analysed, the toxins of the T-2 group T-2 toxin, HT-2 toxin, T-2 triol und T-2 tetraol were found in 33, 66, 2 and 7%. Toxin content was higher in feeds than in foods (semolina and flour). In food samples, the German regulatory level for DON (500 μg/kg) was not exceeded, three samples of maize flour contained ZON above the regulatory level (50 μg/kg). Presented at the 26th Mykotoxin-Workshop in Herrching, Germany, May17–19, 2004  相似文献   

17.
A total of 92 samples — 23 winter wheat, 12 summer barley, 5 oats and 52 mixed feed — were collected from a state factory in Kaunas, Lithuania and were analysed for the presence of trichothecenes, zearalenone (ZEN) and ochratoxin A (OA) using gas chromatography with electron capture detection and immunoaffinity column/high performance liquid chromatography with fluorescence and UV detections. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin and HT-2 toxin were detected at concentrations above 10 μg/kg in 68%, 48%, 38% and 8% of cereal samples, respectively, and in 98%, 88%, 12% and 8% of samples of mixed feed for swine and poultry. More than 10 μg/kg of zearalenone and ochratoxin A were found in 58% and 92% of the mixed feed samples, respectively. The highest concentrations of all analysed trichothecenes in Lithuanian mixed feed and cereal grains, with an exception of T-2 toxin in one oat lot and one sample of mixed feed and OA in two mixed feed samples, were lower than those reported as Lithuanian advisory or tolerance limits.  相似文献   

18.
Alternaria alternata, A. tenuissima, Fusarium graminearum, F. semitectum, F. verticillioides, Aspergillus flavus, and Aspergillus section Nigri strains obtained from blueberries during the 2009 and 2010 harvest season from Entre Ríos, Argentina were analyzed to determine their mycotoxigenic potential. Taxonomy status at the specific level was determined both on morphological and molecular grounds. Alternariol (AOH), alternariol monomethyl ether (AME), aflatoxins (AFs), zearalenone (ZEA), fumonisins (FBs), and ochratoxin A (OTA) were analyzed by HPLC and the trichotecenes deoxynivalenol (DON), nivalenol (NIV), HT-2 toxin (HT-2), T-2 toxin (T-2), fusarenone X (FUS-X), 3-acetyl-deoxynivalenol (3-AcDON), and 15-acetyl-deoxynivalenol (15-AcDON) by GC. Twenty-five out of forty two strains were able to produce some of the mycotoxins analyzed. Fifteen strains of Aspergillus section Nigri were capable of producing Fumonisin B1 (FB1); two of them also produced Fumonisin B2 (FB2) and one Fumonisin B3 (FB3). One of the F. graminearum isolated produced ZEA, HT-2, and T-2 and the other one was capable of producing ZEA and DON. Two A. alternata isolates produced AOH and AME. Four A. tenuissima were capable of producing AOH and three of them produced AME as well. One Aspergillu flavus strain produced aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), and aflatoxin G1 (AFG1). To our knowledge, this is the first report showing mycotoxigenic capacity of fungal species isolated from blueberries that include other fungi than Alternaria spp.  相似文献   

19.
The aerobiology of fungi in the genus Fusarium is poorly understood. Many species of Fusarium are important pathogens of plants and animals and some produce dangerous secondary metabolites known as mycotoxins. In 2006 and 2007, autonomous unmanned aerial vehicles (UAVs) were used to collect Fusarium 40–320 m above the ground at the Kentland Farm in Blacksburg, Virginia. Eleven single-spored isolates of Fusarium graminearum (sexual stage Gibberella zeae) collected with autonomous UAVs during fall, winter, spring, and summer months caused Fusarium head blight on a susceptible cultivar of spring wheat. Trichothecene genotypes were determined for all 11 of the isolates; nine isolates were DON/15ADON, one isolate was DON/3ADON, and one isolate was NIV. All of the isolates produced trichothecene mycotoxins in planta consistent with their trichothecene genotypes. To our knowledge, this is the first report of a NIV isolate of F. graminearum in Virginia, and DON/3ADON genotypes are rare in populations of the fungus recovered from infected wheat plants in the eastern United States. Our data are considered in the context of a new aerobiological framework based on atmospheric transport barriers, which are Lagrangian coherent structures present in the mesoscale atmospheric flow. This framework aims to improve our understanding of population shifts of F. graminearum and develop new paradigms that may link field and atmospheric populations of toxigenic Fusarium spp. in the future.  相似文献   

20.
A mean of 2.7 g fusarenon-X (FUS-X)/L was produced in cultures ofFusarium sp Fn-2B on SSA, a synthetic medium containing sucrose and asparagine. When culturing Fn-2B on several other media, or using otherFusarium strains, much lower concentrations of FUS-X or nivalenol (NIV) were obtained. The SSA-incubations with Fn-2B in an optimal volume of 100 mL were stopped just before reaching maximal FUS-X concentration and the start of conversion to NIV. FUS-X was extracted from the 22 days old cultures and partially purified on a silica gel column. It was then hydrolysed to NIV, which was rechromatographed on silica and crystallized. The purity and the chemical and physical properties of the NIV produced were investigated. Potential sources of error when quantifying NIV were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号