首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of stimulation of a DNA helicase by its cognate single-strand DNA-binding protein was examined using herpes simplex virus type-1 UL9 DNA helicase and ICP8. UL9 and ICP8 are two essential components of the viral replisome that associate into a complex to unwind the origins of replication. The helicase and DNA-stimulated ATPase activities of UL9 are greatly elevated as a consequence of this association. Given that ICP8 acts as a single-strand DNA-binding protein, the simplest model that can account for its stimulatory effect predicts that it tethers UL9 to the DNA template, thereby increasing its processivity. In contrast to the prediction, data presented here show that the stimulatory activity of ICP8 does not depend on its single-strand DNA binding activity. Our data support an alternative hypothesis in which ICP8 modulates the activity of UL9. Accordingly, the data show that the ICP8-binding site of UL9 constitutes an inhibitory region that maintains the helicase in an inefficient ground state. ICP8 acts as a positive regulator by neutralizing this region. ICP8 does not affect substrate binding, ATP hydrolysis, or the efficiency of translocation/DNA unwinding. Rather, we propose that ICP8 increases the efficiency with which substrate binding and ATP hydrolysis are coupled to translocation/DNA unwinding.  相似文献   

2.
Trego KS  Parris DS 《Journal of virology》2003,77(23):12646-12659
The origin (ori)-binding protein of herpes simplex virus type 1 (HSV-1), encoded by the UL9 open reading frame, has been shown to physically interact with a number of cellular and viral proteins, including three HSV-1 proteins (ICP8, UL42, and UL8) essential for ori-dependent DNA replication. In this report, it is demonstrated for the first time that the DNA polymerase processivity factor, UL42 protein, provides accessory function to the UL9 protein by enhancing the 3'-to-5' helicase activity of UL9 on partially duplex nonspecific DNA substrates. UL42 fails to enhance the unwinding activity of a noncognate helicase, suggesting that enhancement of unwinding requires the physical interaction between UL42 and UL9. UL42 increases the steady-state rate for unwinding a 23/38-mer by UL9, but only at limiting UL9 concentrations, consistent with a role in increasing the affinity of UL9 for DNA. Optimum enhancement of unwinding was observed at UL42/UL9 molecular ratios of 4:1, although enhancement was reduced when high UL42/DNA ratios were present. Under the assay conditions employed, UL42 did not alter the rate constant for dissociation of UL9 from the DNA substrate. UL42 also did not significantly reduce the lag period which was observed following the addition of UL9 to DNA, regardless of whether UL42 was added to DNA prior to or at the same time as UL9. Moreover, addition of UL42 to ongoing unwinding reactions increased the steady-state rate for unwinding, but only after a 10- to 15-min lag period. Thus, the increased affinity of UL9 for DNA most likely is the result of an increase in the rate constant for binding of UL9 to DNA, and it explains why helicase enhancement is observed only at subsaturating concentrations of UL9 with respect to DNA. In contrast, ICP8 enhances unwinding at both saturating and subsaturating UL9 concentrations and reduces or eliminates the lag period. The different means by which ICP8 and UL42 enhance the ability of UL9 to unwind DNA suggest that these two members of the presumed functional replisome may act synergistically on UL9 to effect initiation of HSV-1 DNA replication in vivo.  相似文献   

3.
UL9, the origin-binding protein of herpes simplex virus type 1 (HSV-1), has been overexpressed in an insect cell overexpression system and purified to homogeneity. In this report, we confirm and extend recent findings on the physical properties, enzymatic activities, and binding properties of UL9. We demonstrate that UL9 exists primarily as a homodimer in solution and that these dimers associate to form a complex nucleoprotein structure when bound to the HSV origin of replication. We also show that UL9 is an ATP-dependent helicase, capable of unwinding partially duplex DNA in a sequence-independent manner. Although the helicase activity of UL9 is demonstrable on short duplex substrates in the absence of single-stranded DNA-binding proteins, the HSV single-stranded DNA-binding protein ICP8 (but not heterologous binding proteins) stimulates UL9 to unwind long DNA sequences of over 500 bases. We were not able to demonstrate unwinding of fully duplex DNA sequences containing the HSV origin of replication. However, in experiments designed to detect origin-dependent unwinding, we did find that UL9 wraps supercoiled DNA independent of sequence or ATP hydrolysis.  相似文献   

4.
Genetic and biochemical studies have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication. A number of studies have previously suggested that these two proteins specifically interact, and more recent studies have confirmed that the viral DNA polymerase from HSV-1-infected cells consists of a heterodimer of the UL30 (Pol; the catalytic subunit) and UL42 polypeptides. A comparison of the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells indicated that the Pol-UL42 complex is more highly processive than Pol alone on singly primed M13 single-stranded substrates. The results of these studies are consistent with the idea that the UL42 polypeptide is an accessory subunit of the HSV-1 DNA polymerase that acts to increase the processivity of polymerization. Preliminary experiments suggested that the increase in processivity was accompanied by an increase in the affinity of the polymerase for the ends of linear duplex DNA. We have further characterized the effect of the UL42 polypeptide on a defined hairpin primer template substrate. Gel shift and filter binding studies show that the affinity of the Pol catalytic subunit for the 3' terminus of the primer template increases 10-fold in the presence of UL42. DNase I footprinting experiments indicate that the Pol catalytic subunit binds to the primer template at a position that protects 14 bp of the 3' duplex region and an adjacent 18 bases of the single-stranded template. The presence of the UL42 polypeptide results in the additional protection of a contiguous 5 to 14 bp in the duplex region but does not affect the 5' position of the Pol subunit. Free UL42 protects the entire duplex region of the substrate but does not bind to the single-stranded region. Taken together, these results suggest that the increase in processivity in the presence of UL42 is related to the double-stranded DNA-binding activity of free UL42 and that the role of UL42 in the DNA polymerase complex is to act as a clamp, decreasing the probability that the polymerase will dissociate from the template after each cycle of catalysis.  相似文献   

5.
The human cytomegalovirus DNA polymerase includes an accessory protein, UL44, which has been proposed to act as a processivity factor for the catalytic subunit, UL54. How UL44 interacts with UL54 has not yet been elucidated. The crystal structure of UL44 revealed the presence of a connector loop analogous to that of the processivity subunit of herpes simplex virus DNA polymerase, UL42, which is crucial for interaction with its cognate catalytic subunit, UL30. To investigate the role of the UL44 connector loop, we replaced each of its amino acids (amino acids 129 to 140) with alanine. We then tested the effect of each substitution on the UL44-UL54 interaction by glutathione S-transferase pulldown and isothermal titration calorimetry assays, on the stimulation of UL54-mediated long-chain DNA synthesis by UL44, and on the binding of UL44 to DNA-cellulose columns. Substitutions that affected residues 133 to 136 of the connector loop measurably impaired the UL44-UL54 interaction without altering the ability of UL44 to bind DNA. One substitution, I135A, completely disrupted the binding of UL44 to UL54 and inhibited the ability of UL44 to stimulate long-chain DNA synthesis by UL54. Thus, similar to the herpes simplex virus UL30-UL42 interaction, a residue of the connector loop of the accessory subunit is crucial for UL54-UL44 interaction. However, while alteration of a polar residue of the UL42 connector loop only partially reduced binding to UL30, substitution of a hydrophobic residue of UL44 completely disrupted the UL54-UL44 interaction. This information may aid the discovery of small-molecule inhibitors of the UL44-UL54 interaction.  相似文献   

6.
DNA topoisomerase II uses a complex, sequential mechanism of ATP hydrolysis to catalyze the transport of one DNA duplex through a transient break in another. ICRF-193 is a catalytic inhibitor of topoisomerase II that is known to trap a closed-clamp intermediate form of the enzyme. Using steady-state and rapid kinetic ATPase and DNA transport assays, we have analyzed how trapping this intermediate by the drug perturbs the topoisomerase II mechanism. The drug has no effect on the rate of the first turnover of decatenation but potently inhibits subsequent turnovers with an IC(50) of 6.5 +/- 1 microM for the Saccharomyces cerevisiae enzyme. This drug inhibits the ATPase activity of topoisomerase II by an unusual, mixed-type mechanism; the drug is not a competitive inhibitor of ATP, and even at saturating concentrations of drug, the enzyme continues to hydrolyze ATP, albeit at a reduced rate. Topoisomerase II that was specifically isolated in the drug-bound, closed-clamp form continues to hydrolyze ATP, indicating that the enzyme clamp does not need to re-open to bind and hydrolyze ATP. When rapid-quench ATPase assays were initiated by the addition of ATP, the drug had no effect on the sequential hydrolysis of either the first or second ATP. By contrast, when the drug was prebound, the enzyme hydrolyzed one labeled ATP at the uninhibited rate but did not hydrolyze a second ATP. These results are interpreted in terms of the catalytic mechanism for topoisomerase II and suggest that ICRF-193 interacts with the enzyme bound to one ADP.  相似文献   

7.
The Escherichia coli primosome is a mobile multiprotein DNA replication-priming apparatus that assembles at a specific site (termed a primosome assembly site (PAS] on single-stranded DNA-binding protein-coated single-stranded DNA. The PRI A protein (factor Y, protein n') is a PAS sequence-specific (d)ATPase as well as a DNA helicase and is believed to direct the assembly of the primosome at a PAS. In this report, the PRI A DNA helicase reaction is dissected in vitro, by use of a strand displacement assay, into three steps with distinct ATP requirements. First, the PRI A protein gains entry to the DNA via an ATP-independent, PAS sequence-specific binding event. Second, the PRI A protein translocates along the single-stranded DNA in the 3'----5' direction at a maximal rate of 90 nucleotides/s. DNA translocation requires ATP hydrolysis. The ATP concentration required to support half of the maximal translocation rate is 100 microM, which is identical to the Km for ATP of the PRI A protein DNA-dependent ATPase activity. Finally, the PRI A protein unwinds duplex DNA. The ATP concentration required for duplex DNA unwinding depends upon the length of the duplex region to be unwound. Displacement of a 24-nucleotide long oligomer required no more ATP than that required for the translocation of PRI A protein along single-stranded DNA, whereas displacement of a 390-nucleotide long DNA fragment required a 10-fold higher concentration of ATP than that required for oligomer displacement.  相似文献   

8.
The herpes simplex virus type 1 origin-binding protein, OBP, is a DNA helicase encoded by the UL9 gene. The protein binds in a sequence-specific manner to the viral origins of replication, two OriS sites and one OriL site. In order to search for efficient inhibitors of the OBP activity, we have obtained a recombinant origin-binding protein expressed in Escherichia coli cells. The UL9 gene has been amplified by PCR and inserted into a modified plasmid pET14 between NdeI and KpnI sites. The recombinant protein binds to Box I and Box II sequences and possesses helicase and ATPase activities. In the presence of ATP and viral protein ICP8 (single-strand DNA-binding protein), the initiator protein induces unwinding of the minimal OriS duplex (≈80?bp). The protein also binds to a single-stranded DNA (OriS?) containing a stable Box I-Box III hairpin and an unstable AT-rich hairpin at the 3′-end. In the present work, new minor groove binding ligands have been synthesized which are capable to inhibit the development of virus-induced cytopathic effect in cultured Vero cells. Studies on binding of these compounds to DNA and synthetic oligonucleotides have been performed by fluorescence methods, gel mobility shift analysis and footprinting assays. Footprinting studies have revealed that Pt-bis-netropsin and related molecules exhibit preferences for binding to the AT-spacer in OriS. The drugs stabilize structure of the AT-rich region and inhibit the fluctuation opening of AT-base pairs which is a prerequisite to unwinding of DNA by OBP. Kinetics of ATP-dependent unwinding of OriS in the presence and absence of netropsin derivatives have been studied by measuring the efficiency of Forster resonance energy transfer (FRET) between fluorophores attached to 5′- and 3′- ends of an oligonucleotide in the minimal OriS duplex. The results are consistent with the suggestion that OBP is the DNA Holiday junction (HJ) binding helicase. The protein induces conformation changes (bending and partial melting) of OriS duplexes and stimulates HJ formation in the absence of ATP. The antiviral activity of bis-netropsins is coupled with their ability to inhibit the fluctuation opening of АТ base pairs in the А?+?Т cluster and their capacity to stabilize the structure of the АТ-rich hairpin in the single-stranded oligonucleotide corresponding to the upper chain in the minimal duplex OriS. The antiviral activities of bis-netropsins in cell culture and their therapeutic effects on HSV1-infected laboratory animals have been studied.  相似文献   

9.
Purified Rad3 protein from the yeast Saccharomyces cerevisiae is a single-stranded DNA-dependent ATPase and also acts as a DNA helicase on partially duplex DNA. In this study we show that the DNA helicase activity is inhibited when a partially duplex circular DNA substrate is exposed to ultraviolet (UV) radiation. Inhibition of DNA helicase activity is sensitive to the particular strand of the duplex region which carries the damage. Inhibition is retained if the single-stranded circle is irradiated prior to annealing to an unirradiated oligonucleotide, but not if a UV-irradiated oligonucleotide is annealed to unirradiated circular single-stranded DNA. UV irradiation of single-stranded DNA or deoxyribonucleotide homopolymers also inhibits the ability of these polynucleotides to support the hydrolysis of ATP by Rad3 protein. UV radiation damage apparently blocks translocation of Rad3 protein and results in the formation of stable Rad3 protein-UV-irradiated DNA complexes. As a consequence, Rad3 protein remains sequestered on DNA, presumably at sites of base damage. The sensitivity of Rad3 protein to the presence of DNA damage on the strand along which it translocates provides a potential mechanism for damage recognition during nucleotide excision repair and may explain the absolute requirement for Rad3 protein for damage-specific incision of DNA in yeast.  相似文献   

10.
Antony E  Hingorani MM 《Biochemistry》2003,42(25):7682-7693
Mismatch repair proteins correct errors in DNA via an ATP-driven process. In eukaryotes, the Msh2-Msh6 complex recognizes base pair mismatches and small insertion/deletions in DNA and initiates repair. Both Msh2 and Msh6 proteins contain Walker ATP-binding motifs that are necessary for repair activity. To understand how these proteins couple ATP binding and hydrolysis to DNA binding/mismatch recognition, the ATPase activity of Saccharomyces cerevisiae Msh2-Msh6 was examined under pre-steady-state conditions. Acid-quench experiments revealed that in the absence of DNA, Msh2-Msh6 hydrolyzes ATP rapidly (burst rate = 3 s(-1) at 20 degrees C) and then undergoes a slow step in the pathway that limits catalytic turnover (k(cat) = 0.1 s(-1)). ATP is hydrolyzed similarly in the presence of fully matched duplex DNA; however, in the presence of a G:T mismatch or +T insertion-containing DNA, ATP hydrolysis is severely suppressed (rate = 0.1 s(-1)). Pulse-chase experiments revealed that Msh2-Msh6 binds ATP rapidly in the absence or in the presence of DNA (rate = 0.1 microM(-1) s(-1)), indicating that for the Msh2-Msh6.mismatched DNA complex, a step after ATP binding but before or at ATP hydrolysis is the rate-limiting step in the pathway. Thus, mismatch recognition is coupled to a dramatic increase in the residence time of ATP on Msh2-Msh6. This mismatch-induced, stable ATP-bound state of Msh2-Msh6 likely signals downstream events in the repair pathway.  相似文献   

11.
Martinez-Senac MM  Webb MR 《Biochemistry》2005,44(51):16967-16976
RecG is a DNA helicase involved in the repair of damage at a replication fork and catalyzes the reversal of the fork to a point beyond the damage in the template strand. It unwinds duplex DNA in reactions that are coupled to ATP hydrolysis. The kinetic mechanism of duplex DNA unwinding by RecG was analyzed using a quantitative fluorescence assay based on the process of contact quenching between Cy3 and Dabcyl groups attached to synthetic three-way DNA junctions. The data show that the protein moves at a rate of 26 bp s(-1) along the duplex DNA during the unwinding process. RecG ATPase activity during translocation indicates a constant rate of 7.6 s(-1), measured using a fluorescent phosphate sensor, MDCC-PBP. These two rates imply a movement of approximately 3 bp per ATP hydrolyzed. We demonstrate in several trapping experiments that RecG remains attached to DNA after translocation to the end of the arm of the synthetic DNA junction. ATPase activity continues after translocation is complete. Dissociation of RecG from the product DNA occurs only very slowly, suggesting strong interactions between them. The data support the idea that interactions of the duplex template arm with the protein are the major sites of binding and production of translocation.  相似文献   

12.
Herpes simplex virus type-1 origin-binding protein (UL9 protein) initiates viral replication by unwinding the origins. It possesses sequence-specific DNA-binding activity, single-stranded DNA-binding activity, DNA helicase activity, and ATPase activity that is strongly stimulated by single-stranded DNA. We have examined the role of cysteines in its action as a DNA helicase. The DNA helicase and DNA-dependent ATPase activities of UL9 protein were stimulated by reducing agent and specifically inactivated by the sulfhydryl-specific reagent N-ethylmaleimide. To identify the cysteine responsible for this phenomenon, a conserved cysteine in the vicinity of the ATP-binding site (cysteine 111) was mutagenized to alanine. UL9C111A protein exhibits defects in its DNA helicase and DNA-dependent ATPase activities and was unable to support origin-specific DNA replication in vivo. A kinetic analysis indicates that these defects are due to the inability of single-stranded DNA to induce high affinity ATP binding in UL9C111A protein. The DNA-dependent ATPase activity of UL9C111A protein is resistant to N-ethylmaleimide, while its DNA helicase activity remains sensitive. Accordingly, sensitivity of UL9 protein to N-ethylmaleimide is due to at least two cysteines. Cysteine 111 is involved in coupling single-stranded DNA binding to ATP-binding and subsequent hydrolysis, while a second cysteine is involved in coupling ATP hydrolysis to DNA unwinding.  相似文献   

13.
Using a fluorescent sensor for inorganic phosphate, the kinetics of ATP hydrolysis by PcrA helicase were measured in the presence of saturating concentrations of oligonucleotides of various lengths. There is a rapid phase of inorganic phosphate release that is equivalent to several turnovers of the ATPase, followed by slower steady-state ATP hydrolysis. The magnitude of the rapid phase is governed by the length of single-stranded DNA, while the slow phase is independent of its length. A kinetic model is presented in which the rapid phase is associated with translocation along single-stranded DNA, after the PcrA binds randomly along the DNA. There is a linear relationship between the length of single-stranded DNA and both the duration and amplitude of the rapid phase. These data suggest that the translocation activity occurs at 50 bases/s in unidirectional single-base steps, each requiring the hydrolysis of 1 ATP molecule.  相似文献   

14.
Y Hotta  H Stern 《Biochemistry》1978,17(10):1872-1880
An ATP-dependent DNA unwinding protein is present at a high level of activity in meiotic cells of lilies. The protein also acts as a DNA-dependent ATPase, the single strand form being the preferred cofactor. It binds in the absence of ATP to single-strand DNA and to ends or nicks in duplex DNA. A 3'-OH terminus is required for binding at duplex ends; such binding is highly stable. Unwinding occurs in the presence of ATP, and it is limited to about 50 base pairs per end or 400-500 base pairs per nick. The ATP hydrolyzed during unwinding is distinguishable from ATP hydrolysis in the presence of single-strand DNA.  相似文献   

15.
Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis.  相似文献   

16.
Pre-steady-state and steady-state kinetics of nucleotide incorporation and excision were used to assess potential mechanisms by which the fidelity of the herpes simplex virus type 1 DNA polymerase catalytic subunit (Pol) is enhanced by its processivity factor, UL42. UL42 had no effect on the pre-steady-state rate constant for correct nucleotide incorporation (150 s(-1)) nor on the primary rate-limiting conformational step. However, the equilibrium dissociation constant for the enzyme in a stable complex with primer-template was 44 nm for Pol and 7.0 nm for Pol/UL42. The catalytic subunit and holoenzyme both selected against incorrect nucleotide incorporation predominantly at the level of nucleotide affinity, although UL42 slowed by 4-fold the maximum rate of incorporation of incorrect, compared with correct, nucleotide. Pol, with or without UL42, cleaved matched termini at a slower rate than mismatched ones, but UL42 did not significantly alter the pre-steady-state rate constant for mismatch excision ( approximately 16 s(-1)). The steady-state rate constant for nucleotide addition was 0.09 s(-1) and 0.03 s(-1) for Pol and Pol/UL42, respectively, and enzyme dissociation was the rate-limiting step. The longer half-life for DNA complexes with Pol/UL42 (23 s) compared with that with Pol (8 s) affords a greater probability for excision when a misincorporation event does occur, accounting predominantly for the failure of Pol/UL42 to accumulate mismatched product at moderate nucleotide concentrations.  相似文献   

17.
The herpes simplex virus (HSV) type 1 helicase-primase is a three-protein complex, consisting of a 1:1:1 association of UL5, UL8, and UL52 gene products (J.J. Crute, T. Tsurumi, L. Zhu, S. K. Weller, P. D. Olivo, M. D. Challberg, E. S. Mocarski, and I. R. Lehman, Proc. Natl. Acad. Sci. USA 86:2186-2189, 1989). We have purified this complex, as well as a subcomplex consisting of UL5 and UL52 proteins, from insect cells infected with baculovirus recombinants expressing the appropriate gene products. In confirmation of previous reports, we find that whereas UL5 alone has greatly reduced DNA-dependent ATPase activity, the UL5/UL52 subcomplex retains the activities characteristic of the heterotrimer: DNA-dependent ATPase activity, DNA helicase activity, and the ability to prime DNA synthesis on a poly(dT) template. We also found that the primers made by the subcomplex are equal in length to those synthesized by the UL5/UL8/UL52 complex. In an effort to uncover a role for UL8 in HSV DNA replication, we have developed a model system for lagging-strand synthesis in which the primase activity of the helicase-primase complex is coupled to the activity of the HSV DNA polymerase on ICP8-coated single-stranded M13 DNA. Using this assay, we found that the UL8 subunit of the helicase-primase is critical for the efficient utilization of primers; in the absence of UL8, we detected essentially no elongation of primers despite the fact that the rate of primer synthesis on the same template is undiminished. Reconstitution of lagging-strand synthesis in the presence of UL5/UL52 was achieved by the addition of partially purified UL8. Essentially identical results were obtained when Escherichia coli DNA polymerase I was substituted for the HSV polymerase/UL42 complex. On the basis of these findings, we propose that UL8 acts to increase the efficiency of primer utilization by stabilizing the association between nascent oligoribonucleotide primers and template DNA.  相似文献   

18.
单纯疱疹病毒1型(Herpes simplex virus type 1, HSV-1) UL42作为病毒编码的DNA聚合酶辅助亚基之一,是一种多功能蛋白,其在催化和调节病毒在细胞核内的有效复制发挥了重要的作用。已知UL42能提高DNA聚合酶催化亚基UL30的持续合成能力,激活病毒DNA聚合酶活性;介导DNA聚合酶的入核;与DNA模板链结合,提高病毒复制的保真度,以及含有抑制DNA聚合酶活性的肽段,提示其在病毒复制过程中也可能具有负调控作用。近期亦有报道显示,UL42能够阻断肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)激活的核转录因子(nuclear factor kappa-B,NF-κB)信号通路以及干扰素调控因子3(interferon regulatory factor 3, IRF-3)的功能,提示其在病毒逃逸宿主天然免疫反应中发挥了一定的功能,但具体的作用机制尚不明确。本文对目前国内外HSV-1 UL42的结构特点、主要功能、作用机制及其在抗病毒药物研发中的研究进展进行综述,为后续揭示病毒致病机制和抗病毒药物的研发提供参考。  相似文献   

19.
The way that UL42, the processivity subunit of the herpes simplex virus DNA polymerase, interacts with DNA and promotes processivity remains unclear. A positively charged face of UL42 has been proposed to participate in electrostatic interactions with DNA that would tether the polymerase to a template without preventing its translocation via DNA sliding. An alternative model proposes that DNA binding by UL42 is not important for processivity. To investigate these issues, we substituted alanine for each of four conserved arginine residues on the positively charged surface. Each single substitution decreased the DNA binding affinity of UL42, with 14- to 30-fold increases in apparent dissociation constants. The mutant proteins exhibited no meaningful change in affinity for binding to the C terminus of the catalytic subunit of the polymerase, indicating that the substitutions exert a specific effect on DNA binding. The substitutions decreased UL42-mediated long-chain DNA synthesis by the polymerase in the same rank order in which they affected DNA binding, consistent with a role for DNA binding in polymerase processivity. Combining these substitutions decreased DNA binding further and impaired the complementation of a UL42 null virus in transfected cells. Additionally, using a revised mathematical model to analyze rates of dissociation of UL42 from DNAs of various lengths, we found that dissociation from internal sites, which would be the most important for tethering the polymerase, was relatively slow, even at ionic strengths that permit processive DNA synthesis by the holoenzyme. These data provide evidence that the basic surface of UL42 interacts with DNA and support a model in which DNA binding by UL42 is important for processive DNA synthesis.  相似文献   

20.
C S Chow  D M Coen 《Journal of virology》1995,69(11):6965-6971
The herpes simplex virus DNA polymerase is a heterodimer consisting of a catalytic subunit and the protein UL42, which functions as a processivity factor. It has been hypothesized that UL42 tethers the catalytic subunit to the DNA template by virtue of DNA binding activity (J. Gottlieb, A. I. Marcy, D. M. Coen, and M. D. Challberg, J. Virol. 64:5976-5987, 1990). Relevant to this hypothesis, we identified two linker insertion mutants of UL42 that were unable to bind to a double-stranded-DNA-cellulose column but retained their ability to bind the catalytic subunit. These mutants were severely impaired in the stimulation of long-chain-DNA synthesis by the catalytic subunit in vitro. In transfected cells, the expressed mutant proteins localized to the nucleus but were nonetheless deficient in complementing the growth of a UL42 null virus. Thus, unlike many other processivity factors, UL42 appears to require an intrinsic DNA binding activity for its function both in vitro and in infected cells. Possible mechanisms for the activity of UL42 and its potential as a drug target are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号