首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signals can be perceived and amplified at the cell membrane by receptors coupled to the production of a variety of second messengers, including myoinositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]. The myoinositol polyphosphate 5-phosphatases (5PTases; EC 3.1.3.56) comprise a large protein family that hydrolyzes 5-phosphates from a variety of myoinositol phosphate (InsP) and phosphoinositide phosphate (PtdInsP) substrates. Arabidopsis thaliana has 15 genes encoding 5PTases. Biochemical analyses of a subgroup of 5PTase enzymes suggest that these enzymes have both overlapping and unique substrate preferences. Ectopic expression of these genes in transgenic plants can reduce Ins(1,4,5)P(3) levels and alter abscisic acid (ABA) signaling. To further explore the function of 5PTases in signaling, we have identified and characterized T-DNA insertional mutants for 5PTase1 and 5PTase2 and produced a double mutant. When grown in the dark, the seeds from these mutants germinate faster than wild-type seeds and the mutant seedlings have longer hypocotyls than wild-type seedlings. Seeds from these mutant lines also demonstrate an increase in sensitivity to ABA. These changes in early seedling growth are accompanied by mass increases in Ins(1,4,5)P(3), but not by changes in endogenous ABA content. By labeling the endogenous myoinositol pool in 5ptase1 and 5ptase2 mutants, we detected increases in Ins(1,4,5)P(3) and a decrease in PtdIns, PtdIns(4)P, and phosphatidylinositol (4,5) bisphosphate. Taken together, these data indicate that the At5PTase1 and At5PTase2 genes have nonredundant roles in hydrolyzing inositol second-messenger substrates and that regulation of Ins(1,4,5)P(3) levels is important during germination and early seedling development.  相似文献   

2.
Intracellular calcium (Ca(2+)) increases rapidly after heat shock (HS) in the Ca(2+)/calmodulin (Ca(2+)/CaM) HS signal transduction pathway: a hypothesis proposed based on our previous findings. However, evidence for the increase in Ca(2+) after HS was obtained only through physiological and pharmacological experiments; thus, direct molecular genetic evidence is needed. The role of phosphoinositide-specific phospholipase C (PI-PLC) is poorly understood in the plant response to HS. In this work, atplc9 mutant plants displayed a serious thermosensitive phenotype compared with wild-type (WT) plants after HS. Complementation of atplc9 with AtPLC9 rescued both the basal and acquired thermotolerance phenotype of the WT plants. In addition, thermotolerance was even improved in overexpressed lines. The GUS staining of AtPLC9 promoter:GUS transgenic seedlings showed that AtPLC9 expression was ubiquitous. The fluorescence distribution of the fusion protein AtPLC9 promoter:AtPLC9:GFP revealed that the subcellular localization of AtPLC9 was restricted to the plasma membrane. The results of a PLC activity assay showed a reduction in the accumulation of inositol-1,4,5-trisphosphate (IP(3)) in atplc9 during HS and improved IP(3) generation in the overexpressed lines. Furthermore, the heat-induced increase in intracellular Ca(2+) was decreased in atplc9. Accumulation of the small HS proteins HSP18.2 and HSP25.3 was downregulated in atplc9 and upregulated in the overexpressed lines after HS. Together, these results provide molecular genetic evidence showing that AtPLC9 plays a role in thermotolerance in Arabidopsis.  相似文献   

3.
Cyclic ADP-ribose (cADPR) was previously shown to activate transient expression of two abscisic acid (ABA)-responsive genes in tomato cells. Here, we show that the activity of the enzyme responsible for cADPR synthesis, ADP-ribosyl (ADPR) cyclase, is rapidly induced by ABA in both wild-type (WT) and abi1-1 mutant Arabidopsis plants in the absence of protein synthesis. Furthermore, in transgenic Arabidopsis plants, induced expression of the Aplysia ADPR cyclase gene resulted in an increase in ADPR cyclase activity and cADPR levels, as well as elevated expression of ABA-responsive genes KIN2, RD22, RD29a, and COR47 (although to a lesser extent than after ABA induction). Genome-wide profiling indicated that about 28% of all ABA-responsive genes in Arabidopsis are similarly up- and downregulated by cADPR and contributed to the identification of new ABA-responsive genes. Our results suggest that activation of ADPR cyclase is an early ABA-signaling event partially insensitive to the abi1-1 mutation and that an increase in cADPR plays an important role in downstream molecular and physiological ABA responses.  相似文献   

4.
5.
Phospholipid metabolism is involved in hyperosmotic-stress responses in plants. To investigate the role of phosphoinositide-specific phospholipase C (PI-PLC)-a key enzyme in phosphoinositide turnover-in hyperosmotic-stress signaling, we analyzed changes in inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) content in response to hyperosmotic shock or salinity in Arabidopsis thaliana T87 cultured cells. Within a few s, a hyperosmotic shock, caused by mannitol, NaCl, or dehydration, induced a rapid and transient increase in Ins(1,4,5)P3. However, no transient increase was detected in cells treated with ABA. Neomycin and U73122, inhibitors of PI-PLC, inhibited the increase in Ins(1,4,5)P3 caused by the hyperosmotic shock. A rapid increase in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in response to the hyperosmotic shock also occurred, but the rate of increase was much slower than that of Ins(1,4,5)P3. These findings indicate that the transient Ins(1,4,5)P3 production was due to the activation of PI-PLC in response to hyperosmotic stress. PI-PLC inhibitors also inhibited hyperosmotic stress-responsive expression of some dehydration-inducible genes, such as rd29A (lti78/cor78) and rd17 (cor47), that are controlled by the DRE/CRT cis-acting element but did not inhibit hyperosmotic stress-responsive expression of ABA-inducible genes, such as rd20. Taken together, these results suggest the involvement of PI-PLC and Ins(1,4,5)P3 in an ABA-independent hyperosmotic-stress signal transduction pathway in higher plants.  相似文献   

6.
In WRK1 cells vasopressin stimulates Ins(1,4,5)P3 accumulation and mobilizes intracellular calcium. These two phenomena are transient and exhibit similar time-courses. Experiments performed on intact cells or membrane preparations demonstrate that calcium may also stimulate an accumulation of inositol phosphates. This suggests a possible positive feedback regulation of the primary accumulation of Ins(1,4,5)P3 induced by vasopressin. In order to test such a possibility we studied the vasopressin-induced Ins(1,4,5)P3 accumulation, where intracellular calcium mobilization is artificially suppressed by incubating the cells with EGTA in the presence of ionomycin. Under these conditions the accumulation of Ins(1,4,5)P3 induced by 1 microM vasopressin is inhibited by around 50% when measured 5 s after stimulation. This inhibition is not due to an alteration of the VIa vasopressin receptor binding properties, a reduction of the amount of substrate available for the phospholipase C, a stimulation of the Ins(1,4,5)P3 5-phosphatase or an activation of the Ins(1,4,5,)P3 kinase. It is more likely the consequence of the suppression of calcium wave generated by Ins(1,4,5)P3 which may in its turn stimulate a phospholipase C. Different arguments favour this hypothesis: (1) calcium at an intracellular physiological concentration (0.1-1 microM) is able to stimulate a phospholipase C; (2) artificially increasing the [Ca2+]i inside the WRK1 cell induces an accumulation of Ins(1,4,5)P3; and (3) the time-course of the inhibition of Ins(1,4,5)P3 accumulation induced by an EGTA/ionomycin treatment correlates well with that of the calcium mobilization. Altogether these results suggest that Ins(1,4,5)P3 accumulation in WRK1 cells may result from two distinct mechanisms: a direct vasopressin receptor-mediated PLC activation which is independent of calcium and a calcium-mediated PLC activation related to the intracellular calcium mobilization.  相似文献   

7.
8.
To respond to physical signals and endogenous hormones, plants use specific signal transduction pathways. We and others have previously shown that second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] is used in abscisic acid (ABA) signaling, and that some mutants with altered Ins(1,4,5)P3 have altered responses to ABA. Specifically, mutants defective in the myo-inositol polyphosphate 5-phosphatases (5PTases) 1 and 2 genes that hydrolyze 5-phosphates from Ins(1,4,5)P3 and other PtdInsP and InsP substrates, have elevated Ins (1,4,5)P3, and are ABA-hypersensitive. Given the antagonistic relationship between ABA and gibberellic acid (GA), we tested the response of these same mutants to a GA synthesis inhibitor, paclobutrazol (PAC). We report here that 5ptase1, 5ptase2 and 5ptase11 mutants are hypersensitive to PAC, suggesting a relationship between elevated Ins(1,4,5)P3 and decreased GA signal transduction. These data provide insight into signaling cross-talk between ABA and GA pathways.Key words: inositol, phosphatidylinositol phosphate, paclobutrazol, gibberellic acid, inositol trisphosphate, paclobutrazol  相似文献   

9.
A genetic approach was used to increase phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2] biosynthesis and test the hypothesis that PtdInsP kinase (PIPK) is flux limiting in the plant phosphoinositide (PI) pathway. Expressing human PIPKIalpha in tobacco (Nicotiana tabacum) cells increased plasma membrane PtdIns(4,5)P2 100-fold. In vivo studies revealed that the rate of 32Pi incorporation into whole-cell PtdIns(4,5)P2 increased >12-fold, and the ratio of [3H]PtdInsP2 to [3H]PtdInsP increased 6-fold, but PtdInsP levels did not decrease, indicating that PtdInsP biosynthesis was not limiting. Both [3H]inositol trisphosphate and [3H]inositol hexakisphosphate increased 3-and 1.5-fold, respectively, in the transgenic lines after 18 h of labeling. The inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] binding assay showed that total cellular Ins(1,4,5)P3/g fresh weight was >40-fold higher in transgenic tobacco lines; however, even with this high steady state level of Ins(1,4,5)P3, the pathway was not saturated. Stimulating transgenic cells with hyperosmotic stress led to another 2-fold increase, suggesting that the transgenic cells were in a constant state of PI stimulation. Furthermore, expressing Hs PIPKIalpha increased sugar use and oxygen uptake. Our results demonstrate that PIPK is flux limiting and that this high rate of PI metabolism increased the energy demands in these cells.  相似文献   

10.
Stomatal closing to abscisic acid (ABA) was studied in leaf epidermal peels of a dexamethasone (Dex)-inducible transgenic line expressing the phospholipase C AtPLC1 antisense in the Columbia genetic background. In the absence of Dex, the Ca2+ buffer, ethylene glycol-bis(b-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) and the phopholipase C inhibitor, 1-[6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl]-1H-pyrrole-2,5-dione (U73122) specifically inhibited the response to 20 μM ABA, whereas the Ca2+ buffer, 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) inhibited the response to 20 or 30 μM ABA. Neither EGTA nor BAPTA increased the U73122 effect. Applying 30 μM Dex specifically affected 20 μM ABA-induced stomatal closing through reducing its magnitude as well as suppressing the EGTA, BAPTA and U73122 inhibitory effects. Neither Dex nor U73122 changed the specific inhibitory effects of both the antagonist of cyclic ADP-ribose synthesis, nicotinamide and the GTP-binding protein (G protein) modulators, pGlu-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH2 (GP Ant-2) and mas17 on 30 μM ABA-induced stomatal closing. When tested in combination, substituting nicotinamide for mas17, but not for GP Ant-2, enhanced their inhibitory effect to an extent that BAPTA did not increase. These results supported that AtPLC1 primarily mediates the Ca2+-dependent stomatal closing response to 20 μM ABA as much as 30 μM Dex did not affect 20 μM ABA-induced stomatal closing when tested on the wild type Columbia-4 ecotype. Furthermore, the present study suggested that Ca2+ mobilization did not involve any dependency between AtPLC1 and a putative G protein-coupled ADP-ribosyl cyclase at the tested ABA concentrations.  相似文献   

11.
12.
Woodcock EA  Mitchell CJ  Biden TJ 《FEBS letters》2003,546(2-3):325-328
Phospholipase C (PLC) activation in neonatal rat ventricular cardiomyocytes (NRVM) generates inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3)) in response to elevations in Ca(2+) or inositol(1,4)bisphosphate in response to G protein stimulation. Overexpression of PLCdelta(1) increased total [(3)H]inositol phosphate (InsP) content and elevated [(3)H]Ins(1,4,5)P(3), but failed to increase [(3)H]InsP responses to the Ca(2+) ionophore A23187. Antisense PLCdelta(1) expression reduced endogenous PLCdelta(1) content but did not decrease the A23187 response. In permeabilized NRVM, [(3)H]InsP responses to elevated Ca(2+) were not inhibited by Ins(1,4,5)P(3), even at concentrations 1000-fold greater than required for selective inhibition of PLCdelta(1). Taken together these data provide evidence that PLCdelta(1) does not mediate the InsP response to elevated Ca(2+) in NRVM.  相似文献   

13.
Jones DL  Kochian LV 《The Plant cell》1995,7(11):1913-1922
In crop plants, aluminum (Al) rhizotoxicity is a major problem worldwide; however, the cause of Al toxicity remains elusive. The effects of Al on the inositol 1,4,5-trisphosphate (Ins[1,4,5]P3)-mediated signal transduction pathway were investigated in wheat roots. Exogenously applied Al (50 [mu]M) rapidly inhibited root growth (<2 hr) but did not affect general root metabolism. An Ins(1,4,5)P3 transient was generated in root tips, either before or after exposure to Al for 1 hr, by treating the roots with H2O2 (10 mM). Background (unstimulated) levels of Ins(1,4,5)P3 were similar in both Al-treated and Al-untreated root apices. However, H2O2-stimulated levels of Ins(1,4,5)P3 in root apices showed a significant (>50%) reduction after Al exposure in comparison with untreated controls, indicating that Al may be interfering with the phosphoinositide signaling pathway. When phospholipase C (PLC) was assayed directly in the presence of Al or other metal cations in microsomal membranes, AlCl3 and Al-citrate specifically inhibited PLC action in a dose-dependent manner and at physiologically relevant Al levels. Al exposure had no effect on inositol trisphosphate dephosphorylation or on a range of enzymes isolated from wheat roots, suggesting that Al exposure may specifically target PLC. Possible mechanisms of PLC inhibition by Al and the role of Ins(1,4,5)P3 in Al toxicity and growth are discussed. This study provides compelling evidence that the phytotoxic metal cation Al has an intracellular target site that may be integrally involved in root growth.  相似文献   

14.
With the aim of modifying secondary metabolism in Opium poppy (Papaver somniferum) and tobacco (Nicotiana tabacum) cells, gene transfer was performed using the sam1 gene from Arabidopsis thaliana under the control of the salT promoter. This promoter is induced by ABA in rice and in tobacco and we have shown that it is also induced in poppy cells (gus gene). Putatively transformed poppy and tobacco cell lines with the sam1 gene were obtained. In the absence of exogenous inducer we noticed the expression of the transgene resulting in a significant increase of SAM-S activity in all tested transformants of poppy and in half the transgenic tobacco cell lines tested. Addition of ABA to the culture medium failed to enhance the expression of the transgene in both species and resulted in a decrease of the sam1 gene expression in some cell lines. Since the salT promoter is induced by exogenous ABA in both species (gus reporter gene), we suggest a partial sam1 transgene inactivation in certain cell lines. These results show that the efficiency of a regulatory sequence may be different when fused with a reporter gene (gus) compared to fusion with a gene belonging to the housekeeping family (sam1).  相似文献   

15.
The physiological acclimation of plants to osmotic stresses involves a complex programme of gene regulation. In one signalling pathway, elevated levels of abscisic acid (ABA) activate a subset of stress genes. Because ABA responses lack a definable morphological phenotype, we have screened for mutants that exhibit deregulated ABA-responsive gene expression. To monitor this ABA response, a line of Arabidopsis thaliana carrying a transgene composed of the ABA-responsive Arabidopsis kin2 promoter fused to the coding sequence for the firefly luciferase gene, kin2::luc, was generated. Patterns of ABA-responsive luciferase activity were monitored by photon counting. In contrast to wild-type plants which display a transient activation of kin2::luc, an ABA deregulated gene expression mutant (ade1) exhibits both sustained and enhanced levels of transgene activity. Levels of kin2, cor47 and rab18 expression in ade1 plants are also enhanced and prolonged indicating that the molecular mechanism(s) altered in ade1 plants affects the regulation of other ABA-responsive genes. The mutant phenotype is specific for the ABA response as cold-inducible kin2 expression is unaltered in ade1 plants. Genetic analyses indicate that the ade1 mutant is a monogenic recessive trait. A role for negative regulator function in ABA signalling is discussed.  相似文献   

16.
17.
PRIP-1 was isolated as a novel inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] binding protein with a domain organization similar to phospholipase C-delta1 (PLC-delta1) but lacking the enzymatic activity. Further studies revealed that the pleckstrin homology (PH) domain of PRIP-1 is the region responsible for binding Ins(1,4,5)P3. In this study we aimed to clarify the role of PRIP-1 at the physiological concentration in Ins(1,4,5)P3-mediated Ca2+ signaling, as we had previously used COS-1 cells overexpressing PRIP-1 (Takeuchi et al., 2000, Biochem J 349:357-368). For this purpose we employed PRIP-1 knock out (PRIP-1-/-) mice generated previously (Kanematsu et al., 2002, EMBO J 21:1004-1011). The increase in free Ca2+ concentration in response to purinergic receptor stimulation was lower in primary cultured cortical neurons prepared from PRIP-1-/- mice than in those from wild type mice. The relative amounts of [3H]Ins(1,4,5)P3 measured in neurons labeled with [3H]inositol was also lower in cells from PRIP-1-/- mice. In contrast, PLC activities in brain cortex samples from PRIP-1-/- mice were not different from those in the wild type mice, indicating that the hydrolysis of Ins(1,4,5)P3 is enhanced in cells from PRIP-1-/- mice. In vitro analyses revealed that type1 inositol polyphosphate 5-phosphatase physically interacted with a PH domain of PRIP-1 (PRIP-1PH) and its enzyme activity was inhibited by PRIP-1PH. However, physical interaction with these two proteins did not appear to be the reason for the inhibition of enzyme activity, indicating that binding of Ins(1,4,5)P3 to the PH domain prevented its hydrolyzation. Together, these results indicate that PRIP-1 plays an important role in regulating the Ins(1,4,5)P3-mediated Ca2+ signaling by modulating type1 inositol polyphosphate 5-phosphatase activity through binding to Ins(1,4,5)P3.  相似文献   

18.
The dynamics of inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) production during periods of G-protein-coupled receptor-mediated Ca2+ oscillations have been investigated using the pleckstrin homology (PH) domain of phospholipase C (PLC) delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). Activation of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed in the same Chinese hamster ovary cell indicates that Ca2+ responses to these G-protein-coupled receptors are stimulus strength-dependent. Thus, activation of alpha1B receptors produced transient base-line Ca2+ oscillations, sinusoidal Ca2+ oscillations, and then a steady-state plateau level of Ca2+ as the level of agonist stimulation increased. Activation of M3 receptors, which have a higher coupling efficiency than alpha1B receptors, produced a sustained increase in intracellular Ca2+ even at low levels of agonist stimulation. Confocal imaging of eGFP-PHPLCdelta1 visualized periodic increases in Ins(1,4,5)P3 production underlying the base-line Ca2+ oscillations. Ins(1,4,5)P3 oscillations were blocked by thapsigargin but not by protein kinase C down-regulation. The net effect of increasing intracellular Ca2+ was stimulatory to Ins(1,4,5)P3 production, and dual imaging experiments indicated that receptor-mediated Ins(1,4,5)P3 production was sensitive to changes in intracellular Ca2+ between basal and approximately 200 nM. Together, these data suggest that alpha1B receptor-mediated Ins(1,4,5)P3 oscillations result from a positive feedback effect of Ca2+ onto phospholipase C. The mechanisms underlying alpha1B receptor-mediated Ca2+ responses are therefore different from those for the metabotropic glutamate receptor 5a, where Ins(1,4,5)P3 oscillations are the primary driving force for oscillatory Ca2+ responses (Nash, M. S., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (2001) Nature 413, 381-382). For alpha1B receptors the Ca2+-dependent Ins(1,4,5)P3 production may serve to augment the existing regenerative Ca2+-induced Ca2+-release process; however, the sensitivity to Ca2+ feedback is such that only transient base-line Ca2+ spikes may be capable of causing Ins(1,4,5)P3 oscillations.  相似文献   

19.
20.
The effects of the expression of the protein tyrosine kinase pp60v-src on endothelin- and thrombin-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) production and calcium responses were investigated in Rat-1 fibroblasts. The ability of endothelin-1 to induce the accumulation of these second messengers was dramatically amplified by v-src transformation, with 6- and 3-fold enhancements of the peak Ins(1,4,5)P3 and peak calcium responses, respectively. In contrast, thrombin-dependent responses were slightly reduced following v-src transformation, demonstrating that the augmentation of endothelin-stimulated signal transduction is a selective effect. The magnitude of the stimulated accumulation of Ins(1,4,5)P3 presumably depends upon both the functional activation of phospholipase C to produce Ins(1,4,5)P3, and the activity of the enzymes that metabolize Ins(1,4,5)P3. Although the metabolism of Ins(1,4,5)P3 was strikingly altered by expression of pp60v-src, with a bias towards the production of higher inositol polyphosphates that is consistent with an activated Ins(1,4,5)P3 3-kinase, this change could not account for the marked increase in endothelin-stimulated signaling induced by v-src transformation. This suggests that an effect of pp60v-src is expressed at the level of the plasma membrane, through an interaction with one or more components in the receptor/guanine nucleotide binding protein (G protein)/phospholipase C system that transduces the endothelin signal into Ins(1,4,5)P3 production. Preparation of membranes from normal and v-src-transformed cells showed that, while there was no change in the number of high-affinity endothelin binding sites, the release of Ins(1,4,5)P3 in response to guanine nucleotides and endothelin-1 was significantly increased following v-src transformation. In contrast, the Ins(1,4,5)P3 responses to thrombin and high Ca2+ concentrations were unaffected by transformation. Thus the selective interactions within the G protein system that couples the endothelin receptor to phospholipase C are potential sites at which the v-src transformation process may act to amplify endothelin-dependent Ins(1,4,5)P3 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号