首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscular dysgenesis (mdg) in the mouse is an autosomal recessive mutation, expressed in the homozygous state (in vivo and in vitro) as an absence of skeletal muscle contraction. The distribution of acetylcholine receptors (ACh R) in the diaphragms of phenotypically normal and dysgenic (mdg/mdg) embryos was studied from the 14th to 19th day of gestation by binding of 125I-alpha-bungarotoxin to the muscle, followed by autoradiography of longitudinally sectioned hemidiaphragms and/or of isolated muscle fibers. Localization of ACh R at putative motor end-plate regions begins 14 to 15 days in utero in both normal and dysgenic diaphragms. The distribution of high ACh R density patches is aberrantly scattered beyond the normal innervation pattern in dysgenic diaphragms. Isolated mutant fibers possess (1) multiple ACh R clusters, up to five per single fiber, (2) larger clusters of more variable morphology and variable receptor density than normal clusters, and (3) higher levels of extrajunctional receptors than normal fibers. These autoradiographic results correlate well with higher total level of toxin binding sites per diaphragm and per milligram protein in dysgenic vs normal muscle, as quantified from gamma counting of sucrose density gradient isolation of 125I-toxin-ACh R complexes. The dispersed distribution of ACh R patches on dysgenic muscle may be correlated with extensive phrenic nerve branching as demonstrated by silver impregnation technique. We suggest that the aberrant ACh R cluster distribution is a result of multiple innervation of single fibers from the branched nerve terminals. Possible causes of the excessive nerve branching in the mutant are discussed in light of generalized nerve sprouting found in paralyzed muscle.  相似文献   

2.
Presynaptic regulation of acetylcholine release in the CNS   总被引:1,自引:0,他引:1  
The release of ACh appears to be under the control of autoreceptors localized on cholinergic nerve terminals. Moreover, the process can be regulated by transmitters other than ACh or by modulators either through receptor-mediated or carrier-mediated mechanisms. In this chapter we report on our recent results concerning the regulation of the release of ACh by ACh itself, 5-HT and GABA in the rat hippocampus. In particular it will be shown: 1) that the release of the cholinergic transmitter can be inhibited through muscarinic receptors of the M3 subtype; 2) that 5-HT can interact with ACh by depressing ACh release through the activation of receptors of the 5-HT1B subtype; 3) that the release of ACh can be enhanced by GABA by a novel mechanism involving a selective penetration of the amino acid into the cholinergic terminals.  相似文献   

3.
The goal of the present review is to report information concerning cardiac innervation or more precisely to approach the modulation of cardiac electrical and mechanical activity by parasympathetic innervation. Acetylcholine (ACh) release by nerve endings from the vagus nerve hyperpolarizes the membrane, shortens action potential (AP) duration and has a negative inotropic effect on cardiac muscle. Toxins are usefull tools in the study of membrane signals. The Caribbean ciguatoxin (C-CTX-1) has a muscarinic effect on frog atrial fibres. The toxin evokes the release of ACh from motoneuron nerve terminals innervating this tissue which allows us to propose a model, similar to the one of the neuromuscular junction (nmj), to describe the events occurring during the triggering and release of ACh. Trachynilysin (TLY) is a proteic toxin which causes an influx of Ca2+ into the cells and releases ACh from nmj synaptic vesicles. TLY has a muscarinic effect on atrial fibres which is explicated in the release of neurotransmitter from the nerve endings generated by the TLY-induced Ca2+ influx. It is known that ACh release from nmj is known to be due to exocytosis of synaptic vesicles via the activation of a proteic complex blocked by botulinum toxins. One of these proteins SNAP-25 is the target of type A botulinum toxin (BoNT/A). The study of hearts isolated from BoNT/A poisoned frogs show that atrial AP is lengthened and reveals the presence of SNAP-25 in nerve endings of this tissue. Moreover, the electrical activity of ventricular muscle is markedly altered; in BoNT/A treated frog, an important outward current activated by internal Ca2+ develops. ACh released from nerve terminals binds to a G protein coupled membrane receptor and activates a K+ channel and other effectors. Five subtypes of muscarinic receptors have been cloned from different tissue (M1, M2, M3, M4) subtypes have been identified in cardiac tissues throughout many species. These receptors coupled with different G-proteins activate different effectors. M1 receptors modulate the cardiac plateau and therefore the magnitude of the peak contraction. M2 receptors are mainly involved in the repolarization phase of the AP and modulate the duration of the peak contraction. The roles of M3 and M4 are not yet clearly defined; however, they may activate K+ currents. In conclusion, ACh releases from parasympathetic nerve endings which innervate cardiac cells follows to similar events (Ca2+ influx; presence of a SNAP-25 protein) to those which produce ACh release from nmj, stimulates different G proteins coupled muscarinic receptors, and activates different effectors involved in the modulation of cardiac electrical and mechanical activity.  相似文献   

4.
Nitric oxide (NO), previously demonstrated to participate in the regulation of the resting membrane potential in skeletal muscles via muscarinic receptors, also regulates non-quantal acetylcholine (ACh) secretion from rat motor nerve endings. Non-quantal ACh release was estimated by the amplitude of endplate hyperpolarization (H-effect) following a blockade of skeletal muscle post-synaptic nicotinic receptors by (+)-tubocurarine. The muscarinic agonists oxotremorine and muscarine lowered the H-effect and the M1 antagonist pirenzepine prevented this effect occurring at all. Another muscarinic agonist arecaidine but-2-ynyl ester tosylate (ABET), which is more selective for M2 receptors than for M1 receptors and 1,1-dimethyl-4-diphenylacetoxypiperidinium (DAMP), a specific antagonist of M3 cholinergic receptors had no significant effect on the H-effect. The oxotremorine-induced decrease in the H-effect was calcium and calmodulin-dependent. The decrease was negated when either NO synthase was inhibited by N(G)-nitro-L-arginine methyl ester or soluble guanylyl cyclase was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. The target of muscle-derived NO is apparently nerve terminal guanylyl cyclase, because exogenous hemoglobin, acting as an NO scavenger, prevented the oxotremorine-induced drop in the H-effect. These results suggest that oxotremorine (and probably also non-quantal ACh) selectively inhibit the non-quantal secretion of ACh from motor nerve terminals acting on post-synaptic M1 receptors coupled to Ca(2+) channels in the sarcolemma to induce sarcoplasmic Ca(2+)-dependent synthesis and the release of NO. It seems that a substantial part of the H-effect can be physiologically regulated by this negative feedback loop, i.e., by NO from muscle fiber; there is apparently also Ca(2+)- and calmodulin-dependent regulation of ACh non-quantal release in the nerve terminal itself, as calmidazolium inhibition of the calmodulin led to a doubling of the resting H-effect.  相似文献   

5.
6.
顾琛  施玉梁 《生理学报》1996,48(6):529-535
由研究乙酰胆碱受体激动剂和阻断剂的作用提出,在脊椎动物运动神经末梢存在着对乙酰胆碱(ACh)释放的反馈调节。神经末梢的离了通道在递质释放中有重要作用。本文是利用周膜下记录技术。研究ACh对蛇运动神经末梢离子通道调节作用的报告。(1)2mmol/LACh明显抑制依钙K流(IK,Ca)此效应与3mmol/LTEA的相似。由于nAChR激动剂尼古丁(2mmol/L) 不影响Ik,f和IK,Cdisplay stat  相似文献   

7.
Kv1.3 channels are known to modulate many aspects of neuronal function. We tested the hypothesis that Kv1.3 modulates the function of postganglionic sympathetic neurons. RT-PCR, immunoblot, and immunohistochemical analyses indicated that Kv1.3 channels were expressed in these neurons. Immunohistochemical analyses indicated that Kv1.3 protein was localized to neuronal cell bodies, processes, and nerve fibers at sympathetic neurovascular junctions. Margatoxin (MgTX), a specific inhibitor of Kv1.3, was used to assess the function of the channel. Electrophysiological analyses indicated that MgTX significantly reduced outward currents [P < 0.05; n = 18 (control) and 15 (MgTX)], depolarized resting membrane potential, and decreased the latency to action potential firing [P < 0.05; n = 11 (control) and 13 (MgTX)]. The primary physiological input to postganglionic sympathetic neurons is ACh, which activates nicotinic and muscarinic ACh receptors. MgTX modulated nicotinic ACh receptor agonist-induced norepinephrine release (P < 0.05; n >or= 6), and MgTX-sensitive current was suppressed upon activation of muscarinic ACh receptors with bethanechol (P < 0.05; n = 12). These data indicate that Kv1.3 affects the function of postganglionic sympathetic neurons, which suggests that Kv1.3 influences sympathetic control of cardiovascular function. Our data also indicate that modulation of Kv1.3 is likely to affect sympathetic control of cardiovascular function.  相似文献   

8.
Nicotinic ACh receptor was expressed in Xenopus oocytes by injecting mRNAs produced from cloned cDNAs encoding the four subunits of ACh receptor of Torpedo californica. ACh responses recorded from oocytes 3 days after injection of the mRNAs were reversibly blocked by d-tubocurarine (1-2 microM), indicating that the newly synthesized receptor is of nicotinic type. The reversal potential of ACh response was found at around -1 - -5 mV. The reversal potential was not changed by removal of extracellular C1-, suggesting that the ionic channel of the newly expressed ACh receptor is permeable only to cations. Repetitive applications of ACh caused desensitization of the receptor. The rate of the desensitization was greater when the membrane potential was more negative. Subunit deletion studies showed that all four subunits are required for the formation of ACh receptors with normal ACh sensitivity. However, ACh receptors without delta subunit responded to ACh with low sensitivity. Studies on ACh receptor mutants with -subunits altered by site directed mutagenesis of the cDNA suggest that the anphipathic segment is involved in the channel function of the receptor as well as the four hydrophobic segments since partial deletion of amino acids in these segments essentially abolished ACh sensitivity with relatively little change in 125I-alpha-bungarotoxin binding activity.  相似文献   

9.
Hippocampal cholinergic neuronal activity is reported to be regulated, at least partly, through serotonin1A (5-HT1A) receptors. Chronic lithium treatment has been shown to alter both behavioral and neurochemical responses mediated by postsynaptic 5-HT1A receptors. We investigated whether long-term lithium treatment affects central cholinergic neurotransmission through 5-HT1A receptor-mediated pathways. Changes in acetylcholine (ACh) release induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, in the rat hippocampus were measured using a microdialysis technique and a radioimmunoassay for ACh. Administration of lithium for 21 days resulted in a serum lithium concentration of 1.03 mM and caused little change in density or affinity of [3H]8-OH-DPAT binding sites in the hippocampus. The local application of 8-OH-DPAT into the hippocampus of lithium treated rats increased the ACh efflux in both the absence and the presence of physostigmine, a cholinesterase (ChE) inhibitor, in the perfusion fluid. The basal ACh efflux of lithium treated rats was not different from that of the control rats under normal conditions, but was significantly higher than that of the controls when ChE was inhibited. These results demonstrate that chronic lithium treatment increases spontaneous ACh release in the hippocampus under conditions of ChE inhibition, but not under normal conditions, and enhances cholinergic neurotransmission through 5-HT1A receptor-mediated pathways, and suggest that activation of 5-HT1A receptor function by lithium is related to the enhancement of hippocampal cholinergic neurotransmission.  相似文献   

10.
Changes in parameters of spontaneous acetylcholine (ACh) quantal secretion caused by prolonged high-frequency burst activity of neuromuscular junctions and possible involvement of endogenous calcitonin gene-related peptide (CGRP) and its receptors in these changes were studied. With this purpose, miniature endplate potentials (MEPPs) were recorded using standard microelectrode technique in isolated neuromuscular preparations of m. EDL–n. peroneus after a prolonged high-frequency nerve stimulation (30 Hz for 2 min). An increase in the MEPP amplitudes and time course was observed in the postactivation period that reached maximum 20–30 min after nerve stimulation and progressively faded in the following 30 min of recording. Inhibition of vesicular ACh transporter with vesamicol (1 μM) fully prevented this “wave” of the MEPP enhancement. This indicates the presynaptic origin of the MEPP amplitude increase, possibly mediated via intensification of synaptic vesicle loading with ACh and subsequent increase of the quantal size. Competitive antagonist of the CGRP receptor, truncated peptide isoform CGRP8–37 (1 μM), had no effect on spontaneous secretion parameters by itself but was able to prevent the appearance of enhanced MEPPs in the postactivation period. This suggests the involvement of endogenous CGRP and its receptors in the observed MEPP enhancement after an intensive nerve stimulation. Ryanodine in high concentration (1 μM) that blocks ryanodine receptors and stored calcium release did not influence spontaneous ACh secretion but prevented the increase of the MEPP parameters in the postactivation period. Altogether, the data indicate that an intensive nerve stimulation, which activates neuromuscular junctions and muscle contractions, leads to a release of endogenous CGRP into synaptic cleft and this release strongly depends on the efflux of stored calcium. The released endogenous CGRP is able to exert an acute presynaptic effect on nerve terminals, which involves its specific receptor action and intracellular cascades leading to intensification of ACh loading into synaptic vesicles and an increase in the ACh quantal size.  相似文献   

11.
杀虫药剂的神经毒理学研究进展   总被引:23,自引:1,他引:23  
伍一军  冷欣夫 《昆虫学报》2003,46(3):382-389
大多数杀虫药剂都具有较强的神经毒性,它们对神经系统的作用靶标不同。有机磷类杀虫剂不仅抑制乙酰胆碱酯酶活性和乙酰胆碱受体功能,影响乙酰胆碱的释放,而且还具有非胆碱能毒性,有些有机磷杀虫剂还能引发迟发性神经毒性。新烟碱类杀虫剂作为烟碱型乙酰胆碱受体(nAChR)的激动剂,作用于该类受体的α亚基;它对昆虫的毒性比对哺乳动物的毒性大得多,乃是因为它对昆虫和哺乳动物nAChR的作用位点不同。拟除虫菊酯类杀虫剂主要作用于神经细胞钠通道,引起持续开放,导致传导阻滞;该类杀虫剂也可抑制钙通道。另外,这类杀虫剂还干扰谷氨酸递质和多巴胺神经元递质的释放。拟除虫菊酯类杀虫剂对昆虫的选择毒性很可能是因为昆虫神经元的钠通道结构与哺乳动物的不同。阿维菌素类杀虫剂主要作用于γ-氨基丁酸(GABA)受体,它能促进GABA的释放,增强GABA与GABA受体的结合,使氯离子内流增加,导致突触后膜超级化。由于这类杀虫剂难以穿透脊椎动物的血脑屏障而与中枢神经系统的GABA受体结合,故该类杀虫剂对脊椎动物的毒性远低于对昆虫的毒性。多杀菌素类杀虫剂可与中枢神经系统的nAChR作用,引起Ach长时间释放,此外,这类杀虫剂还可作用于昆虫的GABA受体,改变GABA门控氯通道的功能。  相似文献   

12.
Using 125iodine-labeled α-bungarotoxin (α-BGT-125I) and quantitative radioautography, we have studied the time-course of the change in acetylcholine (ACh) receptor distribution and density occurring in rat diaphragm after denervation. In innervated fibers, ACh receptors are localized at the neuromuscular junction and the extrajunctional receptor density is less than five receptors per square micrometer. The extrajunctional receptor density begins to increase between 2 and 3 days after denervation and increases approximately linearly to 1695 receptors/µm2 at 14 days, subsequently decreasing to 529 receptors/µm2 at 45 days. We have isolated plasma membranes from rat leg muscles at various times after denervation and find that the change in concentration of ACh receptors in the membranes measured by α-BGT-125I binding and scintillation counting follows a time-course similar to the change in ACh receptor density measured radioautographically. Furthermore, we have correlated extrajunctional ACh receptor density measured by radioautography with extrajunctional ACh sensitivity measured by iontophoretic application of ACh and intracellular recording and find that the log of ACh receptor density is related to 0.53 times the log of ACh sensitivity. These results are discussed in terms of the electrophysiological experiments on the ACh receptor and the recent, more biochemical approaches to the study of ACh receptor control and function.  相似文献   

13.
《Molecular membrane biology》2013,30(1-2):131-157
α-Bungarotoxin (BuTX; 5 μg/ml) completely blocked the endplate potential and extrajunctional acetylcholine (ACh) sensitivity of surface fibers in normal and chronically denervated mammalian muscles, respectively, in about 35 min. A 0.72 ± 0.033 mV amplitude endplate potential returned in normal muscle fibers after 6.5 hr. of washout of α-BuTX, and an ACh sensitivity of 41.02 ± 3.95 mV/nC was recorded in denervated muscle after 6.5 hr of wash (control being 1215 ± 197 mV/nC). A two-step reaction of BuTX with binding sites which may allosterically interact is postulated.

Several pharmacologic differences were noted between the ACh receptors at the normal endplate and those appearing extrajunctionally following denervation. In normal innervated muscles exposed to BuTX in the presence of 20 μM carbamylcholine or decamethonium, washout of both drugs restored twitch to control levels within 2 hr. Endplate potentials large enough to initiate action potentials were also recorded in most surface fibers. In contrast, these agents, in much higher concentrations (50 μM), were almost ineffective in preventing BuTX blockade of ACh sensitivity in denervated muscle. Hexamethonium (10 and 50 mM) depressed neuromuscular transmission and blocked the action of BuTX in normal muscle in a dose-dependent fashion. On the extrajunctional receptors, hexamethonium (50 mM) was ineffective in protecting against BuTX. We may conclude that at the normal endplate region there are two distinct populations of ACh receptors, both of which react with cholinergic ligands and BuTX, but that a small population (representing ± 1% of the total) reacts with BuTX reversibly. Our findings further suggest a clear distinction between ACh receptors located at the normal endplate region and those of the extrajunctional region of the chronically denervated mammalian muscle.  相似文献   

14.
15.
迷走神经功能调节与心肌缺血保护   总被引:2,自引:0,他引:2  
Zang WJ  Sun L  Yu XJ  Lv J  Chen LN  Liu BH 《生理学报》2008,60(4):443-452
心血管系统的生理活动受自主神经系统(autonomic nervous system,ANS)调节.已有研究表明,自主神经功能紊乱,尤其是迷走神经功能低下,与心血管疾病(cardiovascular disease,CVD)的发生、发展及预后密切相关.本文结合国内外研究现状,就本研究室在迷走神经对心脏不同部位的调控及其对心肌的保护作用机制方面的研究成果进行阐述.通过收缩功能检测及标准玻璃微电极细胞内记录技术,发现迷走神经递质--乙酰胆碱对哺乳动物心室肌有直接作用,可抑制细胞收缩力及动作电位时程;通过组织化学染色及分子生物学方法进一步证明心室有毒蕈碱受体分布;通过膜片钳技术显示在部分动物心室肌上存在乙酰胆碱激活的内向整流钾通道(acetylcholine-activated potassium channel,KACh),并且其电流(IK·ACh)和心房肌一样具有衰减现象.前期研究证明心房肌IK·ACh的衰减与毒蕈碱受体、G蛋白或钾通道磷酸化有关;而心室肌的IK·ACh还有待于进一步研究.我们建立了相关动物模型,结合心率变异性分析等自主神经评价方法,探讨ANS在健康和疾病状态下的变化情况,证明了迷走神经对心脏调节的增龄性改变及代偿效应.通过提高迷走张力(乙酰胆碱缺血预/后适应、有氧运动、β受体阻断剂),研究改善自主神经平衡对缺血心肌的保护作用以及胆碱能抗炎通路防御缺血,再灌注诱导的炎症损伤机制.综合评价心脏自主神经调节,改善交感和迷走张力平衡,将为CVD防治的基础研究提供重要的理论依据.  相似文献   

16.
We previously demonstrated that brucine and some analogues allosterically enhance the affinity of ACh at muscarinic receptor subtypes M1, M3 or M4. Here we describe allosteric effects at human M1-M4 receptors of four stereoisomers of a pentacyclic structure containing features of the ring structure of brucine. All compounds inhibited 3H-NMS dissociation almost completely at all subtypes with slopes of 1, with similar affinity values at the 3H-NMS-occupied receptor to those estimated from equilibrium assays, consistent with the ternary complex allosteric model. Compound 1a showed positive cooperativity with H-NMS and small negative or neutral cooperativity with ACh at all subtypes. Its stereoisomer, 1b, showed strong negative cooperativity with both 3H-NMS and ACh across the subtypes. Compound 2a was positive with 3H-NMS at M2 and M4 receptors, neutral at M3 and negative at M1 receptors; it was negatively cooperative with ACh at all subtypes. Its stereoisomer, 2b, was neutral with 3H-NMS at M1 receptors and positive at the other subtypes; 2b was negatively cooperative with ACh at M1, M3 and M4 receptors but showed 3-fold positive cooperativity with ACh at M2 receptors. This latter result was confirmed with further 3H-NMS and 3H-ACh radioligand binding assays and with functional assays of ACh-stimulated 35S-GTPgammaS binding. These results provide the first well characterised instance of a positive enhancer of ACh at M2 receptors, and illustrate the difficulty of predicting such an effect.  相似文献   

17.
At the adult neuromuscular junction, acetylcholine (ACh) receptors are highly localized at the subsynaptic membrane, whereas, embryonic myotubes before innervation have receptors distributed over the entire surface. Thus sometime during development, ACh receptors accumulate to the nerve contact area. This nerve-induced receptor accumulation can be reproduced in Xenopus nerve-muscle cultures, which provides us with a unique opportunity to investigate the underlying molecular mechanism of this event. Anderson and Cohen (1977) have shown that nerve-induced receptor accumulation is, at least partly, due to migration of pre-existing receptors. It is, thus, plausible that freely diffusing receptors in the membrane are trapped at the nerve-contact region and form clusters. We tested this diffusion trap model. First, receptors in the background region are indeed predominantly mobile and those in the cluster are immobile. Second, the diffusion of receptors in the membrane is fast enough to account for the rate of receptor accumulation. Third, when receptors were immobilized by a lectin, Concanavalin A, the nerve no longer induced receptor accumulation. Thus the diffusion trap model seems adequate to accommodate these observations. Aside from this diffusion mediated mechanism, it is conceivable that newly formed receptors are preferentially inserted at the nerve contact site and these new receptors become immobilized at the site of insertion. To test this hypothesis we stained new receptors separately from old ones and quantitatively compared their distribution. For this purpose we developed a method to quantify fluorescence micrographs. We found that the ratio between old and new receptors was similar at all nerve-induced clusters examined and at the diffusely distributed region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The nicotinic acetylcholine (ACh) receptor channel mediates synaptic transmission at the neuromuscular junction. During the development of skeletal muscle, ACh receptors undergo changes in distribution, antigenic determinants, degradation rate, and function. Now that these developmental hallmarks have been identified, attention has turned toward understanding both the structural bases for such changes and the role of nerve in triggering these changes. Recently, a much clearer understanding of one of these developmental processes, namely, the alterations in channel function, has emerged through both sensitive patch-clamp measurements and the application of recombinant DNA technology. In light of these new advances, we now reevaluate the processes governing the developmental changes in the functional properties of the ACh receptor.  相似文献   

19.
Adenosine plays a dual role on acetylcholine (ACh) release from myenteric motoneurons via the activation of high-affinity inhibitory A1 and facilitatory A2A receptors. The therapeutic potential of adenosine-related compounds for controlling intestinal motility and inflammation, prompted us to investigate further the role of low-affinity adenosine receptors, A2B and A3, on electrically-evoked (5 Hz, 200 pulses) [3H]ACh release from myenteric neurons. Immunolocalization studies showed that A2B receptors exhibit a pattern of distribution similar to the glial cell marker, GFAP. Regarding A1 and A3 receptors, they are mainly distributed to cell bodies of ganglionic myenteric neurons, whereas A2A receptors are localized predominantly on cholinergic nerve terminals. Using selective antagonists (DPCPX, ZM241385 and MRS1191), data indicate that modulation of evoked [3H]ACh release is balanced through tonic activation of inhibitory (A1) and facilitatory (A2A and A3) receptors by endogenous adenosine. The selective A2B receptor antagonist, PSB603, alone was devoid of effect and failed to modify the inhibitory effect of NECA. The A3 receptor agonist, 2-Cl-IB MECA (1–10 nM), concentration-dependently increased the release of [3H]ACh. The effect of 2-Cl-IB MECA was attenuated by MRS1191 and by ZM241385, which selectively block respectively A3 and A2A receptors. In contrast to 2-Cl-IB MECA, activation of A2A receptors with CGS21680C attenuated nicotinic facilitation of ACh release induced by focal depolarization of myenteric nerve terminals in the presence of tetrodotoxin. Tandem localization of excitatory A3 and A2A receptors along myenteric neurons explains why stimulation of A3 receptors (with 2-Cl-IB MECA) on nerve cell bodies acts cooperatively with prejunctional facilitatory A2A receptors to up-regulate acetylcholine release. The results presented herein consolidate and expand the current understanding of adenosine receptor distribution and function in the myenteric plexus of the rat ileum, and should be taken into consideration for data interpretation regarding the pathophysiological implications of adenosine on intestinal motility disorders.  相似文献   

20.
The relationship between the binding of divalent metal (Me) activators Ca and Sr and the secretion of acetylcholine (ACh) was studied quantitatively at frog motor nerve terminals using conventional electrophysiological methods. Experiments were designed to evaluate the assumption that maximal secretion requires occupancy of all receptors by testing for the presence of spare Ca receptors on nerve endings. Such a receptor reserve for Ca would invalidate the simple mass action approach to ACh secretion. Experimental log [Me]-ACh secretion curves constructed to saturation for Ca Sr were consistent with the presence of spare Ca receptors. La3+ (greater than or equal to 0.5 microM) and 2-chloroadenosine (25 microM) were employed as irreversible antagonists of depolarization-secretion coupling. Despite the irreversible occlusion of a proportion of Me receptors increases in the extracellular [Ca] overcame this antagonism while increases in [Sr] did not. These results suggest that Ca can produce maximal ACh release while leaving a proportion of receptors unoccupied or spare. Further support for this contention is provided by the excellent agreement between the values of the equilibrium affinity constant for Sr calculated by methods that do or do not require the assumption of spare receptors. The equilibrium affinity constant for Ca and the efficacies (efficacy reflects the ability of the Me species once bound to evoke ACh secretion) for both Ca and Sr were determined experimentally by using the mathematical framework of receptor theory. These constants were then employed to generate theoretical curves of log [Me]-ACh secretion. The theoretical relationships were similar to the experimental results, which suggests that the motor nerve endings behaves as a pharmacological receptor for Me agonists and antagonists. It is speculated that spare Ca receptors are equivalent to spare Ca channels and the efficacy may reflect the affinity of Me for an intraterminal site associated with ACh release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号