首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A common terminal structure in glycans from animal glycoproteins and glycolipids is the lactosamine sequence Gal(beta)4GlcNAc-R (LacNAc or LN). An alternative sequence that occurs in vertebrate as well as in invertebrate glycoconjugates is GalNAc(beta)4GlcNAc-R (LacdiNAc or LDN). Whereas genes encoding beta4GalTs responsible for LN synthesis have been reported, the beta4GalNAcT(s) responsible for LDN synthesis has not been identified. Here we report the identification of a gene from Caenorhabditis elegans encoding a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase (Ce(beta)4GalNAcT) that synthesizes the LDN structure. Ce(beta)4GalNAcT is a member of the beta4GalT family, and its cDNA is predicted to encode a 383-amino acid type 2 membrane glycoprotein. A soluble, epitope-tagged recombinant form of Ce(beta)4GalNAcT expressed in CHO-Lec8 cells was active using UDP-GalNAc, but not UDP-Gal, as a donor toward a variety of acceptor substrates containing terminal beta-linked GlcNAc in both N- and O-glycan type structures. The LDN structure of the product was verified by co-chromatography with authentic standards and (1)H NMR spectroscopy. Moreover, Chinese hamster ovary CHO-Lec8 and CHO-Lec2 cells expressing Ce(beta)4GalNAcT acquired LDN determinants on endogenous glycoprotein N-glycans, demonstrating that the enzyme is active in mammalian cells as an authentic beta4GalNAcT. The identification and availability of this novel enzyme should enhance our understanding of the structure and function of LDN-containing glycoconjugates.  相似文献   

2.
A lambda gt11 human placenta cDNA library was screened using a cDNA probe encoding the COOH-terminal region of human beta 1,4-galactosyltransferase and with a synthetic oligonucleotide having a sequence corresponding to that of the 5' end of the cDNA probe. The newly isolated cDNA was found to code for the NH2-terminal and the 5'-untranslated region, primed at an (A)8 region in the coding sequence. A complete amino acid sequence has been deduced which shows only one membrane anchoring domain near the NH2-terminus. Comparison of the sequence to the soluble enzyme suggests proteolytic cleavage at Arg 77. Presently obtained information of human beta 1,4-galactosyltransferase makes it possible to study DNA mutations responsible for genetic defects such as the altered expression of galactosyltransferase found in a variant of congenital dyserythropoietic anemia type II (HEMPAS).  相似文献   

3.
4.
B C Rooney  C H Horne  N Hardman 《Gene》1988,71(2):439-449
Human pregnancy-specific beta 1-glycoprotein (SP1) plays an essential role in normal pregnancy. It is also a well-characterized oncodevelopmental antigen, expressed aberrantly by all trophoblastic tumors and some other malignant cell types. Here we report the identification of a human placental cDNA encoding the SP1 polypeptide sequence. The coding sequence shows 95% identity at the nucleotide level with a distinct, recently published SP1 cDNA sequence (PSG16). Unexpectedly, the sequence is also highly homologous to the published sequence of human carcinoembryonic antigen (CEA). SP1, CEA and CEA-related nonspecific cross-reacting species thus belong to a group of closely related though antigenically diverse tumor-associated glycoproteins. Comparison of the deduced amino acid sequence of the SP1 cDNA with that of CEA provides insight into the modular nature of these related proteins. This may have implications for the genomic organization and evolution of the CEA gene family.  相似文献   

5.
A cDNA clone coding for the cell attachment domain in human fibronectin has been isolated using synthetic oligonucleotides. Three sets of mixed tetradecamer oligonucleotides were synthesized based on amino acid sequences in the 108-amino acid cell attachment domain (Pierschbacher, M. D., Ruoslahti, E., Sundelin, J., Lind, P., and Peterson, P. A. (1982) J. Biol. Chem. 257, 9593-9597). One of these sets was made complementary to amino acids located near the COOH terminus of the cell attachment domain and synthesized as a mixture of 24 sequences. This oligonucleotide mixture was used to prime cDNA synthesis with mRNA prepared from a human fibrosarcoma as a template. A cDNA library was constructed with the oligonucleotide-primed sequences in the vector pBR322. Colonies that hybridized with the primer were isolated from the library and further identified by hybridization with oligonucleotides deduced from an amino acid sequence located 45 amino acid residues NH2-terminal of the primer sequence. One clone which hybridized to both probes was characterized in detail. The insert was 380 base pairs long and its nucleotide sequence agreed completely with the corresponding amino acid sequence of human plasma fibronectin, showing that the sequences for this region are identical in plasma fibronectin and fibronectin from a cell line. This clone should be useful for studies on the expression of fibronectins and may also allow for the production of the biologically active cell attachment domain of fibronectin in bacteria.  相似文献   

6.
We have isolated a cDNA clone encoding human enkephalinase (neutral endopeptidase, EC 3.4.24.11) in a lambda gt10 library from human placenta, and present the complete 742 amino acid sequence of human enkephalinase. The human enzyme displays a high homology with rat and rabbit enkephalinase. Like the rat and rabbit enzyme, human enkephalinase contains a single N-terminal transmembrane region and is likely to be inserted through cell membranes with the majority of protein, including its carboxy-terminus, located extracellularly.  相似文献   

7.
Here we describe the isolation and partial characterization of a new muscle-specific protein (Melusin) which interacts with the integrin cytoplasmic domain. The cDNA encoding Melusin was isolated in a two-hybrid screening of a rat neonatal heart library using beta(1)A and beta(1)D integrin cytoplasmic regions as baits. Melusin is a cysteine-rich cytoplasmic protein of 38 kDa, with a stretch of acidic amino acid residues at the extreme carboxyl-terminal end. In addition, putative binding sites for SH3 and SH2 domains are present in the amino-terminal half of the molecule. Chromosomic analysis showed that melusin gene maps at Xq12.1/13 in man and in the synthenic region X band D in mouse. Melusin is expressed in skeletal and cardiac muscles but not in smooth muscles or other tissues. Immunofluorescence analysis showed that Melusin is present in a costamere-like pattern consisting of two rows flanking alpha-actinin at Z line. Its expression is up-regulated during in vitro differentiation of the C2C12 murine myogenic cell line, and it is regulated during in vivo skeletal muscle development. A fragment corresponding to the tail region of Melusin interacted strongly and specifically with beta(1) integrin cytoplasmic domain in a two-hybrid test, but the full-length protein did not. Because the tail region of Melusin contains an acidic amino acid stretch resembling high capacity and low affinity calcium binding domains, we tested the possibility that Ca(2+) regulates Melusin-integrin association. In vitro binding experiments demonstrated that interaction of full-length Melusin with detergent-solubilized integrin heterodimers occurred only in absence of cations, suggesting that it can be regulated by intracellular signals affecting Ca(2+) concentration.  相似文献   

8.
A 2073-base pair DNA fragment containing a part of gene for a member of carcinoembryonic antigen (CEA) gene family, has been isolated from human DNA library after screening with 32P-labeled 53-mer oligodeoxyribonucleotide corresponding to N-terminal 18 amino acids of CEA gene family and cDNA encoding CEA (1,2). The fragment contains two exons; the one encodes the first 60% of signal peptide and the other the rest of it in addition to 107 amino acids which correspond to the N-terminal domain of CEA (1,2). Apparently, the second intron is inserted between the first and the second nucleotides of the codon for 108th amino acid. The presence of Ala instead of Val as the 21st amino acid of the N-terminal domain indicates that the exon encodes nonspecific crossreacting antigen (NCA).  相似文献   

9.
10.
We set out to determine the expression profiles of glycoproteins possessing N-acetyllactosamine, a precursor carbohydrate of sialyl Le(x), during colorectal cancer development. We immunohistochemically analyzed the distribution of N-acetyllactosamine as well as of beta4GalT-I, a member of the beta1, 4-galactosyltransferase family responsible for N-acetyllactosamine biosynthesis, in normal mucosa and in adenoma and carcinoma of the human colorectum. Using monoclonal antibody H11, N-acetyllactosamine was barely detectable in the normal mucosa. In low-grade adenoma, however, N-acetyllactosamine was weakly but definitely expressed on the cell surface, and its expression level was moderately increased in high-grade adenoma and markedly increased in carcinoma in situ as well as in advanced carcinoma. To detect beta4GalT-I, we used a newly developed polyclonal antibody (designated A18G), which is specific for the stem region of human beta4GalT-I. Faint expression of beta4GalT-I was detectable in normal mucosa, and the expression level was moderately increased in low-grade adenoma and in high-grade adenoma and markedly increased in carcinoma in situ and advanced carcinoma. The expression of N-acetyllactosamine was highly correlated with the expression of beta4GalT-I in these tumor cells. These results indicate that the expression level of beta4GalT-I is apparently enhanced during tumorigenesis in the colorectum and that beta4GalT-I mostly directs the carcinoma-associated expression of N-acetyllactosamine on the colorectal tumor cell surface. (J Histochem Cytochem 47:1593-1601, 1999)  相似文献   

11.
Tan M  Huang P  Meller J  Zhong W  Farkas T  Jiang X 《Journal of virology》2003,77(23):12562-12571
Noroviruses (NORs) are an important cause of acute gastroenteritis. Recent studies of NOR receptors showed that different NORs bind to different histo-blood group antigens (HBGAs), and at least four distinct binding patterns were observed. To determine the structure-function relationship for NORs and their receptors, two strains representing two of the four binding patterns were studied. Strain VA387 binds to HBGAs of A, B, and O secretors, whereas strain MOH binds to HBGAs of A and B secretors only. Using multiple sequence alignments, homology modeling, and structural analysis of NOR capsids, we identified a plausible "pocket" in the P2 domain that may be responsible for binding to HBGA receptors. This pocket consists of a conserved RGD/K motif surrounded by three strain-specific hot spots (N(302), T(337), and Q(375) for VA387 and N(302), N(338), and E(378) for MOH). Subsequent mutagenesis experiments demonstrated that all four sites played important roles in binding. A single amino acid mutation at T(337) (to A) in VA387 or a double amino acid mutation at RN(338) (to TT) in MOH abolished binding completely. Change of the entire RGD motif to SAS abolished binding in case of VA387, whereas single amino acid mutations in that motif did not have an apparent effect on binding to A and B antigens but decreased binding to H antigen. Multiple mutations at the RGK motif of MOH (SIRGK to TFRGD) completely knocked out the binding. Mutation of N(302) or Q(375) in VA387 affected binding to type O HBGA only, while switch mutants with three amino acid changes at either site from MOH to VA387 resulted in a weak binding to type O HBGAs. A further switch mutant with three amino acid changes at E(378) from MOH to VA387 diminished the binding to type A HBGA only. Taken together, our data indicate that the binding pocket likely exists on NOR capsids. Direct evidence of this hypothesis requires crystallography studies.  相似文献   

12.
13.
1. Three groups of cDNA clones (total of six) for human UDP-galactose: beta N-acetylglucosamine galactosyltransferase (4 beta GT) were obtained by screening of a fetal liver library in lambda gt11 with an affinity purified anti4 beta GT antibody. 2. One group of clones (three clones) reacted with two distinct anti4 beta GT murine monoclonal antibodies. 3. Nucleotide sequence of this group of clones were similar to published sequence for human 4 beta GTcDNA, except the 74 nucleotides at the 5'-end. 4. Partially purified fusion protein encoded by this group of clones showed all the catalytic properties of 4 beta GT, although the cDNA was partial and the protein was probably unglycosylated.  相似文献   

14.
We have isolated and sequenced a cDNA clone coding for the human pancreatic secretory trypsin inhibitor (PSTI) from a human pancreatic cDNA library. The predicted product consists of 79 amino acids, and contains no apparent functional polypeptide other than PSTI. Southern blot analysis suggests that there is one copy of PSTI gene per haploid genome. This gene seems to be expressed not only in pancreas, but also in gastric mucosa, since a Northern blot analysis demonstrated the presence of a poly(A) RNA of the same size as in the pancreas. A comparison of sequences between human PSTI mRNA and mouse epidermal growth factor (EGF) mRNA revealed a high homology, suggesting that they share a common ancestral DNA sequence.  相似文献   

15.
In the process of molecular cloning of cDNA for proteins associated with a purified human placental sialidase fraction, we discovered one of the proteins with apparent molecular weight of 46 kDa is in reality alpha-N-acetylgalactosaminidase. The full length cDNA, pcD-HS1204, codes for 358 amino acids with the first 17 residues representing a putative signal peptide. The predicted amino acid sequence shows striking homology with human alpha-galactosidase A and yeast alpha-galactosidase. The substrate specificities as well as the behavior of the 46 kDa protein on hydroxylapatite chromatography confirmed that the 46 kDa protein is in reality alpha-N-acetylgalactosaminidase.  相似文献   

16.
Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further studies of a series of mutant receptors with different regions of the cytoplasmic domain deleted suggested that residues within a 10-amino acid region (amino acids 19-28) of the human transferrin receptor cytoplasmic domain are required for efficient endocytosis. Insertion of this region into the cytoplasmic domain of the tailless mutant receptors restored high efficiency endocytosis. The only tyrosine residue (Tyr 20) in the cytoplasmic domain of the human transferrin receptor is found within this 10-amino acid region. A mutant receptor containing glycine instead of tyrosine at position 20 was estimated to be approximately 20% as active as the wild-type receptor. We conclude that the cytoplasmic domain of the transferrin receptor contains a specific signal sequence located within amino acid residues 19-28 that determines high efficiency endocytosis. Further, Tyr 20 is an important element of that sequence.  相似文献   

17.
18.
19.
beta1,4-Galactosyltransferase I (Gal-T1) normally transfers Gal from UDP-Gal to GlcNAc in the presence of Mn(2+) ion. In the presence of alpha-lactalbumin (LA), the Gal acceptor specificity is altered from GlcNAc to Glc. Gal-T1 also transfers GalNAc from UDP-GalNAc to GlcNAc, but with only approximately 0.1% of Gal-T activity. To understand this low GalNAc-transferase activity, we have carried out the crystal structure analysis of the Gal-T1.LA complex with UDP-GalNAc at 2.1-A resolution. The crystal structure reveals that the UDP-GalNAc binding to Gal-T1 is similar to the binding of UDP-Gal to Gal-T1, except for an additional hydrogen bond formed between the N-acetyl group of GalNAc moiety with the Tyr-289 side chain hydroxyl group. Elimination of this additional hydrogen bond by mutating Tyr-289 residue to Leu, Ile, or Asn enhances the GalNAc-transferase activity. Although all three mutants exhibit enhanced GalNAc-transferase activity, the mutant Y289L exhibits GalNAc-transferase activity that is nearly 100% of its Gal-T activity, even while completely retaining its Gal-T activity. The steady state kinetic analyses on the Leu-289 mutant indicate that the K(m) for GlcNAc has increased compared to the wild type. On the other hand, the catalytic constant (k(cat)) in the Gal-T reaction is comparable with the wild type, whereas it is 3-5-fold higher in the GalNAc-T reaction. Interestingly, in the presence of LA, these mutants also transfer GalNAc to Glc instead of to GlcNAc. The present study demonstrates that, in the Gal-T family, the Tyr-289/Phe-289 residue largely determines the sugar donor specificity.  相似文献   

20.
The distinction between the different classes of glycolipids is conditioned by the action of specific core transferases. The entry point for lacto-series glycolipids is catalyzed by the beta1,3 N-acetylglucosaminyltransferase GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (Lc3) synthase enzyme. The Lc3 synthase activity has been shown to be regulated during development, especially during brain morphogenesis. Here, we report the molecular cloning of a mouse gene encoding an Lc3 synthase enzyme. The mouse cDNA included an open reading frame of 1131 base pairs encoding a protein of 376 amino acids. The Lc3 synthase protein shared several structural motifs previously identified in the members of the beta1,3 glycosyltransferase superfamily. The Lc3 synthase enzyme efficiently utilized the lactosyl ceramide glycolipid acceptor. The identity of the reaction products of Lc3 synthase-transfected CHOP2/1 cells was confirmed by thin-layer chromatography immunostaining using antibodies TE-8 and 1B2 that recognize Lc3 and Gal(beta1,4)GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (nLc4) structures, respectively. In addition to the initiating activity for lacto-chain synthesis, the Lc3 synthase could extend the terminal N-acetyllactosamine unit of nLc4 and also had a broad specificity for gangliosides GA1, GM1, and GD1b to generate neolacto-ganglio hybrid structures. The mouse Lc3 synthase gene was mainly expressed during embryonic development. In situ hybridization analysis revealed that that the Lc3 synthase was expressed in most tissues at embryonic day 11 with elevated expression in the developing central nervous system. Postnatally, the expression was restricted to splenic B-cells, the placenta, and cerebellar Purkinje cells where it colocalized with HNK-1 reactivity. These data support a key role for the Lc3 synthase in regulating neolacto-series glycolipid synthesis during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号