首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of the present study was to investigate the mechanisms involved in the contraction evoked by iso-osmotic high K+ solutions in the estrogen-primed rat uterus. In Ca2+-containing solution, iso-osmotic addition of KCl (30, 60 or 90 mM K+) induced a rapid, phasic contraction followed by a prolonged sustained plateau (tonic component) of smaller amplitude. The KCl (60 mM)-induced contraction was unaffected by tetrodotoxin (3 microM), omega-conotoxin MVIIC (1 microM), GF 109203X (1 microM) or calphostin C (3 microM) but was markedly reduced by tissue treatment with neomycin (1 mM), mepacrine (10 microM) or U-73122 (10 microM). Nifedipine (0.01-0.1 microM) was significantly more effective as an inhibitor of the tonic component than of the phasic component. After 60 min incubation in Ca2+-free solution containing 3 mM EGTA, iso-osmotic KCl did not cause any increase in tension but potentiated contractions evoked by oxytocin (1 microM), sodium orthovanadate (160 micrM) or okadaic acid (20 microM) in these experimental conditions. In freshly dispersed myometrial cells maintained in Ca2+-containing solution and loaded with indo 1, iso-osmotic KCl (60 mM) caused a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i). In cells superfused for 60 min in Ca2+-free solution containing EGTA (1 mM), KCl did not increase [Ca2+]i. In Ca2+-containing solution, KCl (60 mM) produced a 76.0 +/- 16.2% increase in total [3H]inositol phosphates above basal levels and increased the intracellular levels of free arachidonic acid. These results suggest that, in the estrogen-primed rat uterus, iso-osmotic high K+ solutions, in addition to their well known effect on Ca2+ influx, activate other cellular processes leading to an increase in the Ca2+ sensitivity of the contractile machinery by a mechanism independent of extracellular Ca2+.  相似文献   

2.
Contractions of isolated single myocytes of guinea pig heart stimulated by rectangular depolarizing pulses consist of a phasic component and a voltage dependent tonic component. In this study we analyzed the mechanism of activation of the graded, sustained contractions elicited by slow ramp depolarization and their relation to the components of contractions elicited by rectangular depolarizing pulses. Experiments were performed at 37 degrees C in ventricular myocytes of guinea pig heart. Voltage-clamped myocytes were stimulated by the pulses from the holding potential of -40 to +5 mV or by ramp depolarization shifting voltage within this range within 6 s. [Ca2+]i was monitored as fluorescence of Indo 1-AM and contractions were recorded with the TV edge-tracking system. Myocytes responded to the ramp depolarization between -25 and -6 mV by the slow, sustained increase in [Ca2+]i and shortening, the maximal amplitude of which was in each cell similar to that of the tonic component of Ca2+ transient and contraction. The contractile responses to ramp depolarization were blocked by 200 microM ryanodine and Ca2+-free solution, but were not blocked by 20 microM nifedipine or 100-200 microM Cd2+ and potentiated by 5 mM Ni2+. The responses to ramp depolarization were with this respect similar to the tonic but not to the phasic component of contraction: both components were blocked by 200 microM ryanodine, and were not blocked by Cd2+ or Ni2+ despite complete inhibition of the phasic Ca2+ current. However, the phasic component but not the tonic component of contraction in cells superfused with Ni2+ was inhibited by nifedipine. Both components of contraction were inhibited by Ca2+-free solution superfused 15 s prior to stimulation. CONCLUSIONS: In myocytes of guinea pig heart the contractile response to ramp depolarization is equivalent to the tonic component of contraction. It is activated by Ca2+ released from the sarcoplasmic reticulum by the ryanodine receptors. Their activation and inactivation is voltage dependent and it does not depend on the Ca2+ influx by the Ca2+ channels or reverse mode Na+/Ca2+ exchange, however, it may depend on Ca2+ influx by some other, not yet defined route.  相似文献   

3.
Ca2+ concentration has been estimated in isolated myometrium cells using Ca2(+)-sensitive quin-2 fluorescent probe. Two components of Ca permeability of the plasmatic membrane have been determined, a potential-independent one (activated by K+ depolarization and nitrendipine-sensitive), and a basal one (not sensitive to nitrendipine). Smooth muscle cells could maintain intracellular Ca2+ concentration at the physiological level. In the presence of nitrendipine, orthovanadate, an inhibitor of sarcolemma Ca pump, induced the increase in the basal tonus depending on the presence of the Ca2+ in the medium. This suggests that in conditions of the blockage of electrically controlled Ca channels and Ca pump of the plasmatic membrane, the noncompensated basal Ca2+ influx activates the tonic contraction of smooth muscles.  相似文献   

4.
The purpose of this study was to assess the direct effect of progesterone on rabbit pulmonary arteries and to examine the mechanism of its action. Rings of pulmonary artery from male rabbits were suspended in organ baths containing Krebs solution, and isometric tension was measured. The response to progesterone was investigated in arterial rings contracted with noradrenaline (NA), KCl, and CaCl2. The effects of endothelium, nitric oxide (NO), prostaglandins, cyclic GMP (cGMP), and the adrenergic beta-receptor on progesterone-induced relaxation were also assessed. Progesterone inhibited the vasocontractivity to NA, KCl, and CaCl2, and relaxed rabbit pulmonary artery. The relaxing response of progesterone in pulmonary artery was significantly reduced by removal of endothelium, inhibitors of nitric oxide synthase and guanylate cyclase, but not by prostaglandin synthase inhibitor and blockage of the adrenergic beta-receptor. In Ca2+-free (0.1 mM EGTA) Krebs solution, progesterone inhibited NA-induced contraction that was intracellular Ca2+-dependent, but didn't affect the contraction of extracellular Ca2+-dependent component. Our results suggest that progesterone induces relaxation of isolated rabbit pulmonary arteries partially via NO and cGMP. Progesterone may also inhibit Ca2+ influx through potential-dependent calcium channels (PDCs) and Ca2+ release from intracellular stores.  相似文献   

5.
The contribution of Na+ and membrane depolarization to biphasic contractions induced by adrenaline were investigated in the smooth muscle of guinea pig vas deferens. Adrenaline (5 X 10(-6) M) produced an initial small contraction (first contraction) followed by a large tonic contraction (second contraction) with subsequent rhythmic activity. The entire response to adrenaline was largely inhibited by phentolamine (5 X 10(-6) M). By adding an appropriate concentration of Mn2+ (2 X 10(-4) M) or nifedipine (3 X 10(-7) M), a Ca2+ blocker, the second contraction was strongly reduced, accompanied by abolishment of the rhythmic contraction, whereas the first contraction was virtually unaffected. However, the first contraction was markedly suppressed by a higher concentration of Mn2+. All contractions produced by adrenaline were greatly reduced in Ca2+-free solution containing 0.5 mM EGTA. By lowering external Na+ concentration, the first contraction was markedly increased without greatly affecting the second contraction. By exposure to Na+-free isotonic high K+ solution, which elicited a greater depolarization of the membrane, the first contraction produced by adrenaline was also greatly potentiated, while the second and rhythmic contractions were eliminated. These results suggest that the adrenaline-evoked first contraction may be due to an influx of membrane bound Ca2+ which is independent of membrane depolarization, while the second (rhythmic) contraction is due to an influx of extracellular Ca2+ which is dependent upon depolarization.  相似文献   

6.
Cardiac contractile activity is usually controlled by intracellular Ca2+, but it can also be modified by oxidizing agents. Incubation of guinea pig heart myofibrils with diamide (3 mM, 1 h) increased basal (no Ca2+) ATPase activity by 580% and abolished Ca2+ dependence. The effect was proportional to diamide concentration (0.01-1 mM) and duration of preincubation (up to 2 h). Dithiothreitol (5 mM, 1 h) reversed most of the basal ATPase activation and restored Ca2+ sensitivity. Other sulfhydryl reagents produced a similar effect but also produced inhibition of total ATPase. In intact cell preparations, diamide produced a slow tonic contraction, consistent with myofibril activation. In the perfused rat heart, 1 mM diamide slowly increased diastolic ventricular pressure; this increase was partially reversed by dithioerythritol. In isolated rat heart myocytes, 1 mM diamide produced a slow tonic contraction, increased contractility in response to stimulation. Cardiocytes superfused for 1 h with buffer containing EGTA to deplete Ca2+ did not contract in response to stimulation but showed a slow tonic contraction with diamide. This contraction could be slowly and only partially reversed by dithioerythritol. Response to stimulation was restored by addition of Ca2+. The results show that diamide can produce contraction in viable cells. This contraction does not require extracellular Ca2+ and is unlikely to involve intracellular Ca2+. The direct activation of myofibrillar ATPase may contribute to the increased myocardial stiffness seen in ischemia and to ischemic contracture.  相似文献   

7.
Muscarinic receptor mediated membrane currents and contractions were studied in isolated canine colon circular smooth muscle cells. Carbachol (10(-5) M) evoked a slow transient inward current that was superimposed by a transient outward current at holding potentials greater than -50 mV. Carbachol contracted the cells by 70 +/- 2%. The effects of carbachol were blocked by atropine (10(-6) M), tetraethyl ammonium (20 mM), and BAPTA-AM (25 mM applied for 20 min). The inward current and contraction were not sensitive to diltiazem (10(-5) M), nitrendipine (3 x 10(-7) M), niflumic acid (10(-5) M), or N-phenylanthranilic acid (10(-4) M), but were gradually inhibited after repetitive stimulations in Ca2+ free solution. Ni2+ (2 mM) inhibited the inward current by 67 +/- 4%. The inward current reversed at +15 mV. The outward component could be selectively inhibited by iberiotoxin (20 nM) or by intracellular Cs+. Repeated stimulation in the presence of cyclopiazonic acid (CPA, 3 microM) inhibited the carbachol-induced outward current and partially inhibited contraction. CPA did not inhibit the inward current. In conclusion, muscarinic receptor stimulation evoked a CPA-sensitive calcium release that caused contraction and a CPA-insensitive transient inward current was activated that is primarily carried by Ca2+ ions and is sensitive to Ni2+.  相似文献   

8.
Muscarinic receptor activation of phosphoinositide phospholipase C (PLC) has been examined in rat cerebellar granule cells under conditions that modify intracellular Ca2+ stores. Exposure of cells to medium devoid of Ca2+ for various times reduced carbachol stimulation of PLC with a substantial loss (88%) seen at 30 min. A progressive recovery of responses was observed following the reexposure of cells to Ca2+-containing medium (1.3 mM). However, these changes did not appear to result exclusively from changes in the cytosolic Ca2+ concentration ([Ca2+]i), which decreased to a lower steady level (approximately 25 nM decrease in 1-3 min after extracellular omission) and rapidly returned (within 1 min) to control values when extracellular Ca2+ was restored. Only after loading of the intracellular Ca2+ stores through a transient 1-min depolarization of cerebellar granule cells with 40 mM KCl, followed by washing in nondepolarizing buffer, was carbachol able to mobilize intracellular Ca2+. However, the same treatment resulted in an 80% enhancement of carbachol activation of PLC. In other experiments, partial depletion of the Ca2+ stores by pretreatment of cells with thapsigargin and caffeine resulted in an inhibition (18 and 52%, respectively) of the PLC response. Furthermore, chelation of cytosolic Ca2+ with BAPTA/AM did not influence muscarinic activation of PLC in either the control or predepolarized cells. These conditions, however, inhibited both the increase in [Ca2+]i and the PLC activation elicited by 40 mM KCl and abolished carbachol-induced intracellular Ca2+ release in predepolarized cells. Overall, these results suggest that muscarinic receptor activation of PLC in cerebellar granule cells can be modulated by changes in the loading state of the Ca2+ stores.  相似文献   

9.
ABSTRACT: BACKGROUND: Electrophysiological studies of L-type Ca2+ channels in isolated vascular smooth muscle cells revealed that depolarization of these cells evoked a transient and a time-independent Ca2+ current. The sustained, non-inactivating current occurred at voltages where voltage-dependent activation and inactivation overlapped (voltage window) and its contribution to basal tone or active tension in larger multicellular blood vessel preparations is unknown at present. This study investigated whether window Ca2+ influx affects isometric contraction of multicellular C57Bl6 mouse aortic segments. RESULTS: Intracellular Ca2+ (Cai2+, Fura-2), membrane potential and isometric force were measured in aortic segments, which were clamped at fixed membrane potentials by increasing extracellular K+ concentrations. K+ above 20 mM evoked biphasic contractions, which were not affected by inhibition of IP3- or Ca2+ induced Ca2+ release with 2-aminoethoxydiphenyl borate or ryanodine, respectively, ruling out the contribution of intracellular Ca2+ release. The fast force component paralleled Cai2+ increase, but the slow contraction coincided with Cai2+ decrease. In the absence of extracellular Ca2+, basal tension and Cai2+ declined, and depolarization failed to evoke Cai2+ signals or contraction. Subsequent re-introduction of external Ca2+ elicited only slow contractions, which were now matched by Cai2+ increase. After Cai2+ attained steady-state, isometric force kept increasing due to Ca2+- sensitization of the contractile elements. The slow force responses displayed a bell-shaped voltage-dependence, were suppressed by hyperpolarization with levcromakalim, and enhanced by an agonist of L-type Ca2+ channels (BAY K8644). CONCLUSION: The isometric response of mouse aortic segments to depolarization consists of a fast, transient contraction paralleled by a transient Ca2+ influx via Ca2+ channels which completely inactivate. Ca2+ channels, which did not completely inactivate during the depolarization, initiated a second, sustained phase of contraction, which was matched by a sustained non-inactivating window Ca2+ influx. Together with sensitization, this window L-type Ca2+ influx is a major determinant of basal and active tension of mouse aortic smooth muscle.  相似文献   

10.
The properties of Ca2+ channels in strips and single muscle cells of longitudinal muscle of estrogen-dominated rat myometrium were studied under the effects of elevation of K+ concentration, the partial channel agonist Bay K 8644, and nitrendipine. In isolated strips in 0.5 mM Ca2+, Bay K 8644 (pD2 = 7.8-8.0) lowered the threshold for and enhanced the contractions in response to an elevation of K+ concentration, including the maximum response to K+ elevation alone. Bay K 8644 alone in concentrations up through 10(-6) M did not initiate contractions in 0.5 mM Ca2+ solutions. At higher concentrations (10(-5) M), Bay K 8644 behaved as an antagonist to contractions induced by elevation of K+. In isolated cells 10(-7) M Bay K 8644 enhanced the shortenings to elevated K+ and lowered the threshold K+ concentration required. Also no significant contraction occurred with 10(-7) M Bay K 8644 at normal K+ concentration. In contrast with its effect in isolated strips, no significant increase in maximum shortening (to 60 mM K+) was observed, possibly because cells without a mechanical load were maximally shortened by K+ alone. From these studies, we conclude that Ca2+ channels of isolated strips and cells of rat myometrium behave similarly and have similar properties to those of other smooth muscles in their interactions with elevation of K+, nitrendipine, and Bay K 8644.  相似文献   

11.
Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro   总被引:4,自引:0,他引:4  
Quinn T  Molloy M  Smyth A  Baird AW 《Life sciences》2004,74(13):1659-1669
This study investigates the involvement of capacitative Ca2+ entry in excitation-contraction coupling in guinea pig gallbladder smooth muscle. Thapsigargin (0.1 nM-1 microM, a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor) produced slowly developing sustained tonic contractions in guinea pig isolated gallbladder strips. All contractions approached 50% of the response to carbachol (10 microM) after 55 min. Contractile responses to thapsigargin (1 microM) were abolished in a Ca(2+)-free medium. Subsequent re-addition of Ca2+ (2.5 mM) produced a sustained tonic contraction (99 +/- 6% of the carbachol response). The contractile response to Ca2+ re-addition following incubation of tissues in a Ca(2+)-free bathing solution in the absence of thapsigargin was significantly less than in its presence (79 +/- 4 % vs 100 +/- 7 % of carbachol; p < 0.05). Contractile responses to Ca2+ re-addition following treatment with thapsigargin were attenuated by (a) the L-type voltage-operated Ca2+ channel antagonist, nifedipine (10 microM) and (b) the general inhibitor of Ca2+ entry channels including store-operated channels, SK&F96365 (50 microM and 100 microM). In separate experiments, responses to Ca2+ re-addition were essentially abolished by the tyrosine kinase inhibitor, genistein (100 microM). These results suggest that capacitative Ca2+ entry provides a source of activator Ca2+ for guinea pig gallbladder smooth muscle contraction. Contractile responses to Ca2+ re-addition following depletion of sarcoplasmic reticulum Ca2+ stores with thapsigargin, are mediated in part by Ca2+ entry through voltage-operated Ca2+ channels and by capacitative Ca2+ entry through store-operated Ca2+ channels which can be blocked by SK&F96365. Furthermore, capacitative Ca2+ entry in this tissue may be modulated by tyrosine kinase.  相似文献   

12.
We have examined the effects of low Ca2+ solutions, Co2+, and ryanodine on the isometric tension and contraction speed of isolated, developing mouse EDL muscles. Twitch responses of young muscles (7-14 days postnatal) were more sensitive to lowered [Ca2+]o than those of more fully developed muscles (22-35 days postnatal). Responses of EDL muscles from a middle-aged group (15-21 days postnatal) were intermediate between the two other groups. Overall, the time course of contraction in a single twitch was accelerated by low [Ca2+]o. Ca(2+)-free solution induced a 7.95 and 9.25 mV depolarization in young and "old" muscle fibres, respectively. The presence of cobalt ions (5 mM) in the Krebs solution had a similar effect as Ca(2+)-free Krebs in terms of reduction of the isometric twitch and tetanic tensions of EDL muscles from the various age groups. In contrast, the shortening of the contraction time seen with Ca(2+)-free solution did not take place following exposure to Co(2+)-containing solutions. Finally, young (7-14 days postnatal) muscles were less sensitive to the inhibitory action of ryanodine on the twitch compared with more fully developed muscles (22-35 days postnatal). Taken together, our results indicate that from birth to maturity, there is a gradual change in the spectrum of calcium utilization for the contractile process.  相似文献   

13.
The influence of ionic strength on the isometric tension, stiffness, shortening velocity and ATPase activity of glycerol-treated rabbit psoas muscle fiber in the presence and the absence of Ca2+ has been studied. When the ionic strength of an activating solution (containing Mg2+-ATP and Ca2+) was decreased by varying the KCl concentration from 120 to 5 mM at 20 degrees C, the isometric tension and stiffness increased by 30% and 50%, respectively. The ATPase activity increased 3-fold, while the shortening velocity decreased to one-fourth. At 6 degrees C, similar results were obtained. These results suggest that at low ionic strengths ATP is hydrolyzed predominantly without dissociation of myosin cross-bridges from F-actin. In the absence of Ca2+, with decreasing KCl concentration the isometric tension and stiffness developed remarkably at 20 degrees C. However, the ATPase activity and shortening velocity were very low. At low ionic strength, even in the absence of Ca2+ myosin heads are bound to thin filaments. The development of the tension and stiffness were greatly reduced at 6 degrees C or at physiological ionic strength.  相似文献   

14.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Both dibutyryl cAMP and carbachol stimulated amylase released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 microM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 microM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

16.
Biphasic contractions have been obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) containing 0.3 microM isoproterenol; whereas in guinea-pig atria, the same conditions led to monophasic contractions corresponding to the first component of contraction in papillary muscle. The relationships between the amplitude of the two components of the biphasic contraction and the resting membrane potential were sigmoidal curves. The first component of contraction was inactivated for membrane potentials less positive than those for the second component. In Na+-low solution (25 mM), biphasic contraction became monophasic subsequent to the loss of the second component, but tetraethylammonium unmasked the second component of contraction. The relationship between the amplitude of the first component of contraction and the logarithm of extracellular Ca2+ concentration was complex, whereas for the second component it was linear. When Ca2+ ions were replaced by Sr2+ ions, only the second component of contraction was observed. It is suggested that the first component of contraction may be triggered by a Ca2+ release from sarcoplasmic reticulum, induced by the fast inward Ca2+ current and (or) by the depolarization. The second component of contraction may be due to a direct activation of contractile proteins by Ca2+ entering the cell along with the slow inward Ca2+ current and diffusing through the sarcoplasm. These results do not exclude the existence of a third "tonic" component, which could possibly be mixed with the second component of contraction.  相似文献   

17.
We previously showed that zooxanthellatoxin-B, isolated from dinoflagellate, caused a sustained contraction of the aorta in an external Ca2+-dependent manner. To clarify the role of Ca2+ in this action, we examined the effects of zooxanthellatoxin-B as well as a depolarizing stimulus (60 mM KCl), using the simultaneous recording for cytosolic Ca2+ level (fura-2) and developed tension in the rabbit aorta. KCl (60 mM) elicited a rapid cytosolic Ca2+ elevation followed by a pronounced contraction, and time required for half-maximum contraction was 2 min. Zooxanthellatoxin-B caused an increase in cytosolic Ca2+ followed by a gradual contraction, with a time for half-maximum contraction of 5-10 min in a concentration-dependent manner. We found a strong correlation between Ca2+ elevation and the contraction in zooxanthellatoxin-B action. In a Ca2+-free solution, zooxanthellatoxin-B caused neither the contraction nor the increase in cytosolic Ca2+. Furthermore, both pre- and post-treatment with verapamil, a voltage-operated Ca2+-channel blocker, partially suppressed both an increase in cytosolic Ca2+ and the contraction by zooxanthellatoxin-B. Zooxanthellatoxin-B-induced contraction was also inhibited by other voltage-operated Ca2+-channel blockers: nifedipine or diltiazem. These results suggest that zooxanthellatoxin-B-elicited contraction is caused by a Ca2+ influx into the smooth muscle cells, partially via voltage-operated Ca2+ channels.  相似文献   

18.
The effects of MnCl2 on vascular smooth muscle contraction induced by noradrenaline (NA) and KCl were investigated. Rings segments from rat aorta were isolated and changes in isometric tension recorded. MnCl2 (10 microM and 1 mM) significantly attenuated the contractile responses to NA and KCI. There were also reductions in the contractile responses to CaCl2 in NA- and KCl-stimulated rings, after pretreatment with MnCl2. The magnitude of the phasic contraction to NA was significantly reduced in presence of MnCl2. The results suggest that MnCl2 inhibits vascular smooth muscle contraction by influencing a Ca2+-mediated mechanism.  相似文献   

19.
The effects of palmatine on isometric force and intracellular free calcium levels ([Ca2+]i) were determined in isolated rat arterial strips. Palmatine dose-dependently relaxed the contractile responses stimulated by phenylephrine (PE) in aortic strips. In contrast, it only partially relaxed aortic strips contracted by 51 mM KCl. Pretreatment with palmatine shifted the dose-response curves of PE both rightwards and downwards in a dose-dependent manner. When Ca2+-free solution and re-addition of Ca2+ were applied to assess PE-induced phasic and tonic contractions, palmatine was found to be effective in inhibiting both contractions. The effects of palmatine on intracellular calcium levels were measured with the bioluminescent calcium indicator aequorin in rat tail artery strips. Palmatine caused a concomitant, dose-dependent decrease in PE-activated isometric force and [Ca2+]i, resulting in small changes in the [Ca2+]i-force relationship. These results suggest that vasodilatory effect of palmatine was mediated by reducing [Ca2+]i as well as affecting [Ca2+]i sensitivity of the contractile apparatus. Palmatine-induced [Ca2+]i decreases appeared to involve decreases in both Ca2+ release from intracellular stores and Ca2+ influx through calcium channels.  相似文献   

20.
Reduction of uterine perfusion pressure (RUPP) during late pregnancy has been suggested to trigger increases in renal vascular resistance and lead to hypertension of pregnancy. We investigated whether the increased renal vascular resistance associated with RUPP in late pregnancy reflects increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of renal arterial smooth muscle. Single smooth muscle cells were isolated from renal interlobular arteries of normal pregnant Sprague-Dawley rats and a rat model of RUPP during late pregnancy. The cells were loaded with fura 2 and both cell length and [Ca(2+)](i) were measured. In cells of normal pregnant rats incubated in Hanks' solution (1 mM Ca(2+)), ANG II (10(-7) M) caused an initial increase in [Ca(2+)](i) to 414 +/- 13 nM, a maintained increase to 149 +/- 8 nM, and 21 +/- 1% cell contraction. In RUPP rats, the initial ANG II-induced [Ca(2+)](i) (431 +/- 18 nM) was not different from pregnant rats, but both the maintained [Ca(2+)](i) (225 +/- 9 nM) and cell contraction (48 +/- 2%) were increased. Membrane depolarization by 51 mM KCl and the Ca(2+) channel agonist BAY K 8644 (10(-6) M), which stimulate Ca(2+) entry from the extracellular space, caused maintained increases in [Ca(2+)](i) and cell contraction that were greater in RUPP rats than control pregnant rats. In Ca(2+)-free (2 mM EGTA) Hanks' solution, the ANG II- and caffeine (10 mM)-induced [Ca(2+)](i) transient and cell contraction were not different between normal pregnant and RUPP rats, suggesting no difference in Ca(2+) release from the intracellular stores. The enhanced maintained ANG II-, KCl- and BAY K 8644-induced [Ca(2+)](i) and cell contraction in RUPP rats compared with normal pregnant rats suggest enhanced Ca(2+) entry mechanisms of smooth muscle contraction in resistance renal arteries and may explain the increased renal vascular resistance associated with hypertension of pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号