首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenylyl cyclases, the enzymes which catalyze the formation of the second messenger cAMP, are presently known to exist in yeast and related fungi, the amoeba Dictyostelium discoideum, flagellates, plasmodium, and infusoria. However, their structure-functional organization and molecular mechanisms of regulation differ considerably. Thus, in flagellates, tens of structurally similar adenylyl cyclase one-pass transmembrane proteins performing receptor functions have been discovered. In the amoeba D. discoideum, three types of adenylyl cyclases were detected, which differ by their topology, domain organization, and sensitivity to regulatory molecules and physical factors, one of which, adenylyl cyclase-A (AC-A), is similar to mammalian membrane-bound adenylyl cyclases and regulated by extracellular cAMP. Yeasts, in turn, have been shown to possess adenylyl cyclases that do not have transmembrane domains, but are able to form intermolecular complexes stabilized by interactions between repeated regions enriched in leucine residues. The data presented in this review indicate that the main molecular mechanisms underlying the actions of vertebrate adenylyl cyclases evolved as early as in the unicellular organisms and fungi. The structures and functions of adenylyl cyclases of the lower eukaryotes are much more diverse, which might be due both to the peculiarities of their life cycles and to the development at the initial stages of evolution of different models for the functioning and regulation of cAMP-dependent signaling cascades.  相似文献   

2.
The literary and the authors' own data on the structural and functional organization of hormonal signaling systems in the lower eukaryotes (yeasts, trypanosomes, ciliates, slide mold Dictyostelium discoideum) have been summarized and analysed. On the basis of a comparative analysis of the primary structures of signal proteins in the lower and higher eukaryotes (G-protein alpha-subunits, enzymes-cyclases-adenylyl and guanylyl cyclases) some possible pathways of the evolution of proteins are suggested. At the level of unicellular organisms, the main blocks of hormone-sensitive signaling systems of the higher eukaryotes were created. Moreover, signaling systems of the lower eukaryotes ar more invariant than these of the higher eukaryotes. It may be associated with the fact that of functional blocks, typical for signaling systems of multicellular animals, fungi and plants, were selected from the numerous variants of signaling system blocks of unicellular organisms.  相似文献   

3.
The social amoeba Dictyostelium discoideum, a powerful paradigm provides clear insights into the regulation of growth and development. In addition to possessing complex individual cellular functions like a unicellular eukaryote, D. discoideum cells face the challenge of multicellular development. D. discoideum undergoes a relatively simple differentiation process mainly by cAMP mediated pathway. Despite this relative simplicity, the regulatory signaling pathways are as complex as those seen in metazoan development. However, the introduction of restriction-enzyme-mediated integration (REMI) technique to produce developmental gene knockouts has provided novel insights into the discovery of signaling molecules and their role in D. discoideum development. Cell cycle phase is an important aspect for differentiation of D. discoideum, as cells must reach a specific stage to enter into developmental phase and specific cell cycle regulators are involved in arresting growth phase genes and inducing the developmental genes. In this review, we present an overview of the signaling molecules involved in the regulation of growth to differentiation transition (GDT), molecular mechanism of early developmental events leading to generation of cAMP signal and components of cAMP relay system that operate in this paradigm.  相似文献   

4.
Dictyostelium discoideum is a genetically and biochemically tractable social amoeba belonging to the crown group of eukaryotes. It performs some of the tasks characteristic of a leukocyte such as chemotactic motility, macropinocytosis, and phagocytosis that are not performed by other model organisms or are difficult to study. D. discoideum is becoming a popular system to study molecular mechanisms of endocytosis, but the morphological characterization of the organelles along this pathway and the comparison with equivalent and/or different organelles in animal cells and yeasts were lagging. Herein, we used a combination of evanescent wave microscopy and electron microscopy of rapidly frozen samples to visualize primary endocytic vesicles, vesicular-tubular structures of the early and late endo-lysosomal system, such as multivesicular bodies, and the specialized secretory lysosomes. In addition, we present biochemical and morphological evidence for the existence of a micropinocytic pathway, which contributes to the uptake of membrane along side macropinocytosis, which is the major fluid phase uptake process. This complex endosomal compartment underwent continuous cycles of tubulation/vesiculation as well as homo- and heterotypic fusions, in a way reminiscent of mechanisms and structures documented in leukocytes. Finally, egestion of fluid phase from the secretory lysosomes was directly observed.  相似文献   

5.
Intracellular and secreted cAMPs play crucial roles in controlling cell movement and gene regulation throughout development of the social amoeba Dictyostelium discoideum. cAMP is produced by three structurally distinct ACs (adenylate cyclases), ACA, ACG and ACB, which have distinctive but overlapping patterns of expression and, as concluded from gene disruption studies, seemingly overlapping functions. In addition to gene disruption, acute pharmacological abrogation of protein activity can be a powerful tool to identify the protein's role in the biology of the organism. We analysed the effects of a range of compounds on the activity of ACA, ACB and ACG to identify enzyme-specific modulators. Caffeine, which was previously used to specifically block ACA function, also inhibited cAMP accumulation by ACB and ACG. IPA (2',3'-O-isopropylidene adenosine) specifically inhibits ACA when measured in intact cells, without affecting ACB or ACG. All three enzymes are inhibited by the P-site inhibitor DDA (2',5'-dideoxyadenosine) when assayed in cell lysates, but not in intact cells. Tyrphostin A25 [alpha-cyano-(3,4,5-trihydroxy)cinnamonitrile] and SQ22536 [9-(tetrahydro-2'-furyl)adenine] proved to be effective and specific inhibitors for ACG and ACA respectively. Both compounds acted directly on enzyme activity assayed in cell lysates, but only SQ22536 was also a specific inhibitor when added to intact cells.  相似文献   

6.
7.
Iu M Krylov 《Parazitologiia》1992,26(4):305-309
Analysis of peculiarities in organization and functioning of metabolic ways of biosynthesis of purine and pyrimidine nucleotides in representatives of Sporozoa type has shown that molecular aftereffects of adaptation to intracellular parasitism in unicellular eukaryotes consists in the increase in the level of molecular organization, loss of some metabolic path ways and some enzymes, origin of a new metabolic system, a host-parasite one. Functioning of this system is achieved due to developing by the parasite mechanisms that are similar to the host's ones.  相似文献   

8.
Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.  相似文献   

9.
Shpakov AO 《Tsitologiia》2007,49(8):617-630
Guanylyl cyclases (GCs), catalyzing the synthesis of the second messenger cGMP, are key elements of the signaling systems of animals of different phylogenetic levels including unicellular eukaryotes. In the review the literature data concerning unusual GCs observed in unicellular eukaryotes and having the structural-functional organization and topology similar to those of mammalian membrane-bound adenylyl cyclases, are analyzed. Among these GCs there are bifunctional membrane-bound GCs of ciliates and Plasmodium, which have both C-terminal cyclase domain related to mammalian adenylyl cyclases and N-terminal domain with ten membrane-spanning regions homologous to P-type ATPases. The developed by the author comparative analysis of primary structures of GC ATPase domains showed that the domains are high conservative and the motifs, which are closely linked to functional activity of ATPase transporters, are preserved in the domains. It is suggested that ATPase domains carry out either receptor or regulatory functions in GC molecules. Dual substrate specificity of cyclases of unicellular organisms and its possible role in revealing of GC activity in fungi and trypanosomes, lacking GC encoded genes, are discussed. The molecular mechanisms of the functioning of GCs, the regulation of GC activity by different agents, and the participation of these enzymes in control of the processes, such as chemotaxis, aggregation, movement, gametogenesis and photophobis response, are analyzed.  相似文献   

10.
Polarized growth in response to external signals is essential for both the internal organization of cells and generation of complex multicellular structures during development. Oriented growth or movement requires specific detection of an external cue, reorganization of the cytoskeleton and subsequent growth or movement. Genetic approaches in both the budding yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum have shed light on the molecular and cellular aspects of growth or movement towards an external signal. This review discusses the mechanisms and signalling pathways that enable yeast and Dictyostelium cells to translate external signals into directed growth and movement, respectively.  相似文献   

11.
Cross-talk between cAMP and Ca2+ signalling pathways plays a critical role in cellular homoeostasis. Several AC (adenylate cyclase) isoforms, catalysing the production of cAMP from ATP, display sensitivity to submicromolar changes in intracellular Ca2+ and, as a consequence, are key sites for Ca2+ and cAMP interplay. Interestingly, these Ca2+-regulated ACs are not equally responsive to equivalent Ca2+ rises within the cell, but display a remarkable selectivity for regulation by SOCE (store-operated Ca2+ entry). Over the years, considerable efforts at investigating this phenomenon have provided indirect evidence of an intimate association between Ca2+-sensitive AC isoforms and sites of SOCE. Now, recent identification of the molecular components of SOCE [namely STIM1 (stromal interaction molecule 1) and Orai1], coupled with significant advances in the generation of high-resolution targeted biosensors for Ca2+ and cAMP, have provided the first detailed insight into the organization of the cellular microdomains associated with Ca2+-regulated ACs. In the present review, I summarize the findings that have helped to provide our most definitive understanding of the selective regulation of cAMP signalling by SOCE.  相似文献   

12.
The Dictyostelium discoideum genome uncovers seven cyclic nucleotide PDEs (phosphodiesterases), of which six have been characterized previously and the seventh is characterized in the present paper. Three enzymes belong to the ubiquitous class I PDEs, common in all eukaryotes, whereas four enzymes belong to the rare class II PDEs that are present in bacteria and lower eukaryotes. Since all D. discoideum PDEs are now characterized we have calculated the contribution of each enzyme in the degradation of the three important pools of cyclic nucleotides: (i) extracellular cAMP that induces chemotaxis during aggregation and differentiation in slugs; (ii) intracellular cAMP that mediates development; and (iii) intracellular cGMP that mediates chemotaxis. It appears that each cyclic nucleotide pool is degraded by a combination of enzymes that have different affinities, allowing a broad range of substrate concentrations to be degraded with first-order kinetics. Extracellular cAMP is degraded predominantly by the class II high-affinity enzyme DdPDE1 and its close homologue DdPDE7, and in the multicellular stage also by the low-affinity transmembrane class I enzyme DdPDE4. Intracellular cAMP is degraded by the DdPDE2, a class I enzyme regulated by histidine kinase/phospho-relay, and by the cAMP-/cGMP-stimulated class II DdPDE6. Finally, basal intracellular cGMP is degraded predominantly by the high-affinity class I DdPDE3, while the elevated cGMP levels that arise after receptor stimulation are degraded predominantly by a cGMP-stimulated cGMP-specific class II DdPDE5. The analysis shows that the combination of enzymes is tuned to keep the concentration and lifetime of the substrate within a functional range.  相似文献   

13.
Adenyl cyclases and cAMP in plant signaling - past and present   总被引:1,自引:0,他引:1  
In lower eukaryotes and animals 3'-5'-cyclic adenosine monophosphate (cAMP) and adenyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, have long been established as key components and second messengers in many signaling pathways. In contrast, in plants, both the presence and biological role of cAMP have been a matter of ongoing debate and some controversy. Here we shall focus firstly on the discovery of cellular cAMP in plants and evidence for a role of this second messenger in plant signal transduction. Secondly, we shall review current evidence of plant ACs, analyse aspects of their domain organisations and the biological roles of candidate molecules. In addition, we shall assess different approaches based on search motifs consisting of functionally assigned amino acids in the catalytic centre of annotated and/or experimentally tested nucleotide cyclases that can contribute to the identification of novel candidate molecules with AC activity such as F-box and TIR proteins.  相似文献   

14.
The salvage of deoxyribonucleosides in the social amoeba Dictyostelium discoideum, which has an extremely A+T-rich genome, was investigated. All native deoxyribonucleosides were phosphorylated by D. discoideum cell extracts and we subcloned three deoxyribonucleoside kinase (dNK) encoding genes. D. discoideum thymidine kinase was similar to the human thymidine kinase 1 and was specific for thymidine with a K(m) of 5.1 microM. The other two cloned kinases were phylogenetically closer to bacterial deoxyribonucleoside kinases than to the eukaryotic enzymes. D. discoideum deoxyadenosine kinase (DddAK) had a K(m) for deoxyadenosine of 22.7 microM and a k(cat) of 3.7 s(-1) and could not efficiently phosphorylate any other native deoxyribonucleoside. D. discoideum deoxyguanosine kinase was also a purine-specific kinase and phosphorylated significantly only deoxyguanosine, with a K(m) of 1.4 microM and a k(cat) of 3 s(-1). The two purine-specific deoxyribonucleoside kinases could represent ancient enzymes present in the common ancestor of bacteria and eukaryotes but remaining only in a few eukaryote lineages. The narrow substrate specificity of the D. discoideum dNKs reflects the biased genome composition and we attempted to explain the strict preference of DddAK for deoxyadenosine by modeling the active center with different substrates. Apart from its native substrate, deoxyadenosine, DddAK efficiently phosphorylated fludarabine. Hence, DddAK could be used in the enzymatic production of fludarabine monophosphate, a drug used in the treatment of chronic lymphocytic leukemia.  相似文献   

15.
We hypothesize that aspects of animal multicellularity originated before the divergence of metazoans from fungi and social amoebae. Polarized epithelial tissues are a defining feature of metazoans and contribute to the diversity of animal body plans. The recent finding of a polarized epithelium in the non-metazoan social amoeba Dictyostelium discoideum demonstrates that epithelial tissue is not a unique feature of metazoans, and challenges the traditional paradigm that multicellularity evolved independently in social amoebae and metazoans. An alternative view, presented here, is that the common ancestor of social amoebae, fungi, and animals spent a portion of its life cycle in a multicellular state and possessed molecular machinery necessary for forming an epithelial tissue. Some descendants of this ancestor retained multicellularity, while others reverted to unicellularity. This hypothesis makes testable predictions regarding tissue organization in close relatives of metazoans and provides a novel conceptual framework for studies of early animal evolution. Editor's suggested further reading in BioEssays Searching for Eve: Basal metazoans and the evolution of multicellular complexity Abstract.  相似文献   

16.
Peroxisomes contain oxidases generating hydrogen peroxide, and catalase degrading this toxic compound. Another characteristic function of each eukaryotic peroxisome, from yeast to man, is fatty acid beta-oxidation. However, in peroxisomes a variety of other metabolic pathways are located. In fungi, peroxisomes contain enzymes involved in catabolism of unusual carbon and nitrogen sources (methanol, purines, D-amino acids, pipecolynic acid, sarcosine, glycolate, spermidine etc) as well as biosynthesis of lysine in yeasts and penicillin in mycelial fungi. Impairment of peroxisomal structure and functions causes many human disorders. The similar defects have been identified in yeast mutants defective in peroxisomal biogenesis. Peroxisomal biogenesis is actively studied during last two decades using uni- and multicellular model systems. It was observed that many aspects of peroxisomal biogenesis and proteins involved in this process display striking similarity between all eukaryotes, from yeasts to humans. Yeast is a convenient model system for this kind of research. Current review summarizes data on molecular events of peroxisomal biogenesis, functions of peroxine proteins, import of peroxisomal matrix and membrane proteins and on mechanisms of peroxisomedivision and inheritance.  相似文献   

17.
GTP hydrolysis in Dictyostelium discoideum membranes is caused by a low (Km greater than 1 mM) and a high affinity (Km 6.5 microM) GTPase. cAMP enhances GTP hydrolysis apparently by increasing the affinity of the high affinity GTPase (stimulated Km 4.5 microM); the low affinity GTPase was not affected by cAMP. Stimulation of GTP hydrolysis by cAMP was maximal at early time points and declined thereafter. A half-maximal stimulation of GTPase occurred at 3 microM cAMP and the specificity of cAMP derivatives for stimulation of GTPase activity showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Treatment of D. discoideum cells with pertussis toxin decreased the cAMP-induced stimulation of GTPase from 42 +/- 6% in control cells to 17 +/- 9% in pertussis toxin-treated cells. These results suggest that the interaction of cAMP with its surface receptor leads to stimulation of high affinity GTPase in D. discoideum membranes. At least one of those enzymes may represent a guanine nucleotide-binding protein sensitive to pertussis toxin.  相似文献   

18.
Peroxisomes contain oxidases, which generate hydrogen peroxide, and catalase, which degrades this toxic compound. Another characteristic function of each eukaryotic peroxisome, from yeast to man, is fatty acid β-oxidation. However, a variety of other metabolic pathways are also located in peroxisomes. In fungi, peroxisomes contain enzymes involved in catabolism of unusual carbon and nitrogen sources (methanol, purines, D-amino acids, pipecolynic acid, sarcosine, glycolate, spermidine, etc.), as well as biosynthesis of lysine in yeasts and penicillin in mycelial fungi. Impairment of the peroxisome structure and functions causes many human disorders. Similar defects were identified in yeast mutants defective in peroxisome biogenesis. Peroxisome biogenesis has been actively studied using unicellular and multicellular model systems over the last two decades. It was observed that many aspects of peroxisome biogenesis and proteins involved in the process display striking similarity among all eukaryotes from yeasts to humans. Yeasts provide a convenient model system for this kind of research. The review summarizes the data on the molecular events of peroxisome biogenesis, the functions of peroxine proteins, the import of peroxisomal matrix and membrane proteins, and the mechanisms of peroxisome division and inheritance.  相似文献   

19.
20.
Ca(2+) influx and mitogen-activated protein (MAP) kinase activation are important phenomena in signal transduction, which are often interconnected. We investigated whether serpentine receptor-dependent, Gbeta-independent activation of MAP kinase ERK2 by chemoattractant cyclic AMP (cAMP) is mediated by Ca(2+) influx in the social amoeba Dictyostelium discoideum. We generated a D. discoideum double mutant, which harbours a temperature-sensitive Gbeta subunit and expresses the apoaequorin protein. Utilizing this mutant, we demonstrate that cAMP induced Ca(2+) influx into intact D. discoideum cells can be blocked completely at both the permissive and the restrictive temperature, by using either gadolinium ions or Ruthenium Red. Under the same experimental conditions, these substances do not abolish cAMP stimulation of ERK2 at either temperature. We conclude that there is a Gbeta- and Ca(2+) influx-independent pathway for the receptor-dependent activation of MAP kinase ERK2 in D. discoideum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号