首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The RNA genome of the human immunodeficiency virus type-1 (HIV-1) contains a approximately 120 nucleotide Psi-packaging signal that is recognized by the nucleocapsid (NC) domain of the Gag polyprotein during virus assembly. The Psi-site contains four stem-loops (SL1-SL4) that possess overlapping and possibly redundant functions. The present studies demonstrate that the 19 residue SL2 stem-loop binds NC with affinity (K(d)=110(+/-50) nM) similar to that observed for NC binding to SL3 (K(d)=170(+/-65) nM) and tighter than expected on the basis of earlier work, suggesting that NC-SL2 interactions probably play a direct role in the specific recognition and packaging of the full-length, unspliced genome. The structure of the NC-SL2 complex was determined by heteronuclear NMR methods using (15)N,(13)C-isotopically labeled NC protein and SL2 RNA. The N and C-terminal "zinc knuckles" (Cys-X(2)-Cys-X(4)-His-X(4)-Cys; X=variable amino acid) of HIV-1 NC bind to exposed guanosine bases G9 and G11, respectively, of the G8-G9-U10-G11 tetraloop, and residues Lys3-Lys11 of the N-terminal tail forms a 3(10) helix that packs against the proximal zinc knuckle and interacts with the RNA stem. These structural features are similar to those observed previously in the NMR structure of NC bound to SL3. Other features of the complex are substantially different. In particular, the N-terminal zinc knuckle interacts with an A-U-A base triple platform in the minor groove of the SL2 RNA stem, but binds to the major groove of SL3. In addition, the relative orientations of the N and C-terminal zinc knuckles differ in the NC-SL2 and NC-SL3 complexes, and the side-chain of Phe6 makes minor groove hydrophobic contacts with G11 in the NC-SL2 complex but does not interact with RNA in the NC-SL3 complex. Finally, the N-terminal helix of NC interacts with the phosphodiester backbone of the SL2 RNA stem mainly via electrostatic interactions, but does not bind in the major groove or make specific H-bonding contacts as observed in the NC-SL3 structure. These findings demonstrate that NC binds in an adaptive manner to SL2 and SL3 via different subsets of inter and intra-molecular interactions, and support a genome recognition/packaging mechanism that involves interactions of two or more NC domains of assembling HIV-1 Gag molecules with multiple Psi-site stem-loop packaging elements during the early stages of retrovirus assembly.  相似文献   

2.
D J Kerwood  M J Cavaluzzi  P N Borer 《Biochemistry》2001,40(48):14518-14529
The NMR-based structure is described for an RNA model of stem-loop 4 (SL4) from the HIV-1 major packaging domain. The GAGA tetraloop adopts a conformation similar to the classic GNRA form, although there are differences in the details. The type II tandem G.U pairs have a combination of wobble and bifurcated hydrogen bonds where the uracil 2-carbonyl oxygen is hydrogen-bonded to both G,H1 and G,H2. There is the likelihood of a Na(+) ion coordinated to the four carbonyl oxygens in the major groove for these G.U pairs and perhaps to the N7 lone pairs of the G bases as well. A continuous stack of five bases extends over nearly the whole length of the stem to the base of the loop in the RNA 16mer: C15/U14/G13/G5/C6. There is no evidence for a terminal G.A pair; instead, G1 appears quite unrestrained, and A16 stacks on both C15 and G2. Residues G2 through G5 exhibit broadened resonances, especially G3 and U4, suggesting enhanced mobility for the 5'-side of the stem. The structure shows G2/G3/U4 stacking along the same strand, nearly isolated from interaction with the other bases. This is probably an important factor in the signal broadening and apparent mobility of these residues and the low stability of the 16mer hairpin against thermal denaturation.  相似文献   

3.
The host noncoding RNA 7SL is highly enriched in the virions of retroviruses. We examined the regions of 7SL that mediate packaging by HIV-1. Both the Alu domain and the S domain were sufficient to mediate specific packaging when expressed separately as truncations of 7SL. However, while the Alu domain competed with endogenous 7SL for packaging in proportion to Gag, the S domain was packaged additively, implying that the Alu and S domains are packaged via separate mechanisms and that the Alu domain is packaged by the same mechanism as endogenous 7SL. Further truncations of the Alu domain or mutation of the Alu domain helix 5c region significantly reduced packaging efficiency, implicating helix 5c as critical for packaging, reinforcing the finding that 7SL packaging is highly selective, and confirming that 7SL is not passively acquired. Surprisingly, when the Alu domain was mutated so that it no longer contained a binding site for the SRP protein heterodimer SRP9/14, it was no longer packaged in a competitive manner but instead was packaged additively with endogenous 7SL. These data support a model in which 7SL RNA is packaged via interactions between Gag and a 7SL RNA structure that exists transiently at a discrete stage of SRP biogenesis. Our data further indicate that a secondary "additive" pathway exists that can result in the packaging of certain 7SL derivatives in molar excess to endogenously packaged 7SL.  相似文献   

4.
5.
Encapsidation of the genome of the human immunodeficiency virus type-1 (HIV-1) during retrovirus assembly is mediated by interactions between the nucleocapsid (NC) domains of assembling Gag polyproteins and a approximately 110 nucleotide segment of the genome known as the Psi-site. The HIV-1 Psi-site contains four stem-loops (SL1 through SL4), all of which are important for genome packaging. Recent isothermal titration calorimetry (ITC) studies have demonstrated that SL2 and SL3 are capable of binding NC with high affinity (K(d) approximately 140 nM), consistent with proposals for protein-interactive functions during packaging. To determine if SL4 may have a similar function, NC-interactive studies were conducted by NMR and gel-shift methods. In contrast to previous reports, we find that SL4 binds weakly to NC (K(d)=(+/-14 microM), suggesting an alternative function. NMR studies indicate that the GAGA tetraloop of SL4 adopts a classical GNRA-type fold (R=purine, N=G, C, A or U), a motif that stabilizes RNA tertiary structures in other systems. In combination with previously reported gel mobility studies of Psi-site deletion mutants, these findings suggest that SL4 functions in genome recognition not by binding to Gag, but by stabilizing the structure of the Psi-site. Differences in the affinities of NC for SL2, SL3 and SL4 stem-loops can now be rationalized in terms of the different structural properties of stem loops that contain GGNG (SL2 and SL3) and GNRA (SL4) sequences.  相似文献   

6.
7.
The cross-peaks of 1H-NOESY spectra at different time delays are compared to a mode-coupling diffusion (MCD) calculation, including the evaluation of the full 1H relaxation matrix, in the case of a 23 nucleotide fragment of the stem-loop SL1 domain of HIV-1Lai genomic RNA mutated in a single position. The MCD theory gives significant agreement with 1H relaxation experiments enabling a thorough understanding of the differential local dynamics along the sequence and particularly of the dynamics of nucleotides in the stem and in the loop. The differential dynamics of this hairpin structure is important in directing the dimerization of the retroviral genome, a fundamental step in the infectious process. The demonstration of a reliable use of time dependent NOE cross-peaks, largely available from NMR solution structure determination, coupled to MCD analysis, to probe the local dynamics of biological macromolecules, is a result of general interest of this paper.  相似文献   

8.
Mixmer oligonucleotides consisting of residues of both 2'-O-methylnucleosides (OMe) and locked nucleic acids (LNA) were designed targeting two stem-loops in the 5'-UTR of HIV-1 RNA, the transactivation response region (TAR), which is the site of binding of the Tat protein, and the SL3 loop, which is the primary packaging element that binds the Gag polyprotein. These oligonucleotides were found to inhibit syncitia formation dose- and sequence-dependently when delivered to HeLa T4 LTR beta-Gal cells and subsequently infected with HIV-1.  相似文献   

9.
Dimerization of genomic RNA is directly related with the event of encapsidation and maturation of the virion. The initiating sequence of the dimerization is a short autocomplementary region in the hairpin loop SL1. We describe here a new solution structure of the RNA dimerization initiation site (DIS) of HIV-1Lai. NMR pulsed field-gradient spin-echo techniques and multidimensional heteronuclear NMR spectroscopy indicate that this structure is formed by two hairpins linked by six Watson–Crick GC base pairs. Hinges between the stems and the loops are stabilized by intra and intermolecular interactions involving the A8, A9 and A16 adenines. The coaxial alignment of the three A-type helices present in the structure is supported by previous crystallography analysis but the A8 and A9 adenines are found in a bulged in position. These data suggest the existence of an equilibrium between bulged in and bulged out conformations in solution.  相似文献   

10.
11.
Mazier S  Genest D 《Biopolymers》2008,89(3):187-196
The SL1 stem-loop is the dimerization initiation site for linking the two copies of the RNA forming the HIV-1 genome. The 26 nucleotides stem contains a defect consisting on a highly conserved G-rich 1-3 asymmetrical internal loop, which is a major site for nucleocapsid protein binding. Several NMR attempts were undertaken to determine the internal loop structure in the SL1 monomer. However, the RNA constructs used in the different studies were largely mutated, in particular with replacement of the nine nucleotides apical loop by a tetraloop, and divergent results were obtained ranging from a rigid structure to a particularly large flexibility. To investigate the reasons for such discrepancies, we used molecular dynamics simulation of the SL1 monomer to probe the effect of mutations on the conformational stability of the internal loop and of the whole stem. It is found that in the wild-type sequence, the internal loop displays conformational variability originating mainly from the nine nucleotides apical loop flexibility that causes large conformational fluctuations (without changing the average structure) in the 7 bp duplex linking the apical and internal loops. The large amplitude atomic motions in the duplex are transmitted to the internal loop in which they induce conformational changes characterized by a labile hydrogen bond network such as G5 successively H-bonded to A29 and G30. On the contrary, with a four nucleotides apical loop, conformational fluctuations in the duplex are reduced by a factor of 2 and are not sufficiently energizing for promoting changes in the internal loop structure at the time scale of the simulations.  相似文献   

12.
Gag proteins of human immunodeficiency virus type 1 (HIV-1) play a pivotal role in the budding of the virion, in which the zinc finger motifs of the gag proteins recognize the packaging signal of genomic RNA. Nucleolin, an RNA-binding protein, is identified as a cellular protein that binds to murine leukemia virus (MuLV) gag proteins and regulates the viral budding, suggesting that HIV-1 gag proteins, the packaging signal, psi and nucleolin affect the budding of HIV-1. Here we report that nucleolin enhances the release of HIV-1 virions which contain psi. Furthermore, nucleolin and gag proteins form a complex incorporated into virions, and nucleolin promotes the infectivity of HIV-1. Our results suggest that an empty particle which contains neither nucleolin nor the genomic RNA is eliminated during the budding process, and this mechanism is beneficial for escape from the host immune response against HIV-1.  相似文献   

13.
Viral maturation of HIV-1 involves refolding of its genomic RNA, which is believed to include a rearrangement of the SL1 stem-loop from a metastable conformation called kissing loop dimer (KD) to a stable one termed extended dimer (ED). To investigate this rearrangement in vitro we have studied the thermal melting of the RNA dimers formed by slightly modified 23-nucleotide SL1 RNA of HIV-1 Mal. Local structural changes in the RNA dimers during the melting were monitored by changes in the fluorescence of 2-aminopurine (2AP) incorporated in predetermined positions of RNA. We have shown that the stem regions of both preformed KD and ED melt in the temperature interval from 75 ° C to 90 ° C. Kissing loop interface of the KD RNA is found to be disrupted at lower temperatures from 20 ° C to 55 ° C, at which the stem regions remain intact. Conversion of the preformed KD to ED overcoming the kinetic barrier occurs between 55 ° C and 65 ° C. The melting of "loop-loop" regions in both preformed and newly formed EDs takes place around 70 ° C. Our finding that thermoinduced KD-to-ED conversion is preceded by transient dissociation of loop-loop interface disagrees with a common idea of strand exchange without disruption of loop-loop-contact.  相似文献   

14.
The thermodynamics of the opening/closure process of a GC base pair located at the stem-loop junction of the SL1 sequence from HIV-1(Lai) genomic RNA was investigated in the context of a loop-loop homodimer (or kissing complex) using molecular dynamics simulation. The free energy, enthalpy and entropy changes for the closing reaction are 0 kcal x mol(-1), -11 kcal x mol(-1) and -0.037 kcal x mol(-1) x K(-1) at 300 degrees K respectively. Furthermore it is found that the free energy change is the same for the formation of a 11 nucleotide loop closed with UG and for the formation of a 9 nucleotide loop closed with GC. Our study evidences the high flexibility of the nucleotides at the stem-loop junction explaining the weak stability of this structure.  相似文献   

15.

Background

The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5′ end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell).

Results

In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G–C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle.

Conclusion

We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.
  相似文献   

16.
A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus.  相似文献   

17.
Human beta-defensin-2 (HBD-2) is a member of the defensin family of antimicrobial peptides. HBD-2 was first isolated from inflamed skin where it is posited to participate in the killing of invasive bacteria and in the recruitment of cells of the adaptive immune response. Static light scattering and two-dimensional proton nuclear magnetic resonance spectroscopy have been used to assess the physical state and structure of HBD-2 in solution. At concentrations of < or = 2.4 mM, HBD-2 is monomeric. The structure is amphiphilic with a nonuniform surface distribution of positive charge and contains several key structural elements, including a triple-stranded, antiparallel beta-sheet with strands 2 and 3 in a beta-hairpin conformation. A beta-bulge in the second strand occurs at Gly28, a position conserved in the entire defensin family. In solution, HBD-2 exhibits an alpha-helical segment near the N-terminus that has not been previously ascribed to solution structures of alpha-defensins or to the beta-defensin BNBD-12. This novel structural element may be a factor contributing to the specific microbicidal or chemokine-like properties of HBD-2.  相似文献   

18.
19.
The two identical genomic RNA strands inside each HIV-1 viral particle are linked through homodimerization of an RNA stem-loop, termed SL1, near their 5' ends. SL1 first dimerizes through a palindromic sequence in its loop, forming a transient kissing-loop complex which then refolds to a mature, linear duplex. We previously reported the NMR structure of a 23-base truncate of SLI in kissing-dimer form, and here report the high-resolution structure of its linear isoform. This structure comprises three short duplex regions--derived from the central palindrome and two stem regions of each strand, respectively--separated by two bulges that each encompass three unpaired adenines flanking the palindromes. The stacking pattern of these adenines differs from that seen in the kissing-loop complex, and leads to greater colinear base stacking overall. Moreover, the mechanical distortion of the palindrome helix is reduced, and base pairs ruptured during formation of the kissing-loop complex are re-established, so that all potential Watson-Crick pairs are intact. These features together likely account for the greater thermodynamic stability of the mature dimer as compared to its kissing-loop precursor.  相似文献   

20.
Clinical usage of lentiviral vectors is now established and increasing but remains constrained by vector titer with RNA packaging being a limiting factor. Lentiviral vector RNA is packaged through specific recognition of the packaging signal on the RNA by the viral structural protein Gag. We investigated structurally informed modifications of the 5′ leader and gag RNA sequences in which the extended packaging signal lies, to attempt to enhance the packaging process by facilitating vector RNA dimerization, a process closely linked to packaging. We used in-gel SHAPE to study the structures of these mutants in an attempt to derive structure-function correlations that could inform optimized vector RNA design. In-gel SHAPE of both dimeric and monomeric species of RNA revealed a previously unreported direct interaction between the U5 region of the HIV-1 leader and the downstream gag sequences. Our data suggest a structural equilibrium exists in the dimeric viral RNA between a metastable structure that includes a U5–gag interaction and a more stable structure with a U5–AUG duplex. Our data provide clarification for the previously unexplained requirement for the 5′ region of gag in enhancing genomic RNA packaging and provide a basis for design of optimized HIV-1 based vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号