首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The force generated by tracheal spirals and lung parenchymal strips from normal and ovalbumin-sensitized guinea pigs was measured in vitro, after challenge with histamine, carbachol, leukotriene (LT) C4, LTD4, or a prostaglandin endoperoxide analog (U-44069). The responses and sensitivity of airway tissues to the above agonists were identical in normal and sensitized animals. Treatment of tracheal spirals with indomethacin (8.5 microM), phenidone (185 microM), and nordihydroguaiaretic acid (NDGA: 30 microM) reduced resting tension (tone) equally in both normal and sensitized trachea, but did not affect lung parenchymal strips from either group. The responses of tracheal spirals from normal and sensitized animals to low concentrations of histamine, carbachol, LTC4, and LTD4 were reduced or abolished by treatment with the above inhibitors. Responses to higher concentrations of the same agonists were significantly enhanced. In contrast, treatment of normal and sensitized trachea with indomethacin (2.8 and 8.5 microM) did not abolish or reduce the effects of low concentrations of U-44069. However, an enhancement of the effect of high concentrations occurred only on normal tracheal spirals, even though the control tissues from each group responded identically with U-44069 in the absence of any inhibitor. Parenchymal strips increased in sensitivity to histamine, but not carbachol, as a result of time, vehicle, or prior exposure to the drug. Inhibitor treatment did not affect sensitivity or responsiveness of parenchyma to histamine, carbachol, and U-44069, but the contractile activity of LTD4 on both normal and sensitized lung parenchymal strips was reduced by indomethacin, NDGA, and phenidone. We conclude that ovalbumin sensitization does not induce hyperreactivity of guinea pig airways.  相似文献   

2.
The effects of L-641,953 (R-8-fluoro-dibenzo[b, f]thiepin-3-carboxylic acid-5-oxide) have been studied on pulmonary and other smooth muscle preparations in vitro and in vivo. When studied in vitro on guinea-pig tracheal chains, L-641,933 produced significant shifts in the dose-response curves to the prostaglandin endoperoxide analogues, U-44069 (pA2 7.06) and U-46619 (pA2 7.14), and prostaglandin (PG) F2 alpha (pA2 6.33) had minimal activity against contractions induced by histamine (pA2 4.38), 5-hydroxytryptamine (pA2 4.63), and acetylcholine (pA2 4.56) and slightly enhanced relaxation induced by PGE2. When tested on the guinea-pig gall bladder strip in vitro, L-641,953 antagonized contractions induced by U-44069 (pA2 7.03) but was less active against those induced by PGF2 alpha (pA2 6.03), PGE1 (pA2 5.62), and histamine (pA2 4.84). When tested in vitro on the guinea-pig pulmonary artery, L-651-953 significantly antagonized contractions induced by U-44069 (pA2 7.04), U-46619 (pA2 7.14), and PGF2 alpha (pA2 7.16) but was less effective against contractions induced by histamine (pA2 4.19). Schild analysis indicated that L-641,953 was fully competitive against contractions of either the guinea-pig tracheal chain induced by U-46619 or the guinea-pig pulmonary artery induced by U-44069 and U-46619. When tested on human platelets in vitro L-641,953 inhibited aggregation induced by U-44069 (IC50 1.3 X 10(-6) M) but not ADP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
L-648,051, sodium 4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy) propylsulfonyl]-gamma-oxo-benzenebutanoate is a selective and competitive inhibitor of [3H]leukotriene D4 (KB value of 4.0 microM) and to a lesser extent [3H]leukotriene C4 (Ki value of 36.7 microM) binding in guinea pig lung homogenates. Functionally, it selectively antagonized contractions of guinea pig trachea induced by leukotrienes C4, D4, E4, and F4 in concentrations that did not antagonize contractions induced by acetylcholine, histamine, serotonin, prostaglandin F2 alpha, or U-44069 (endoperoxide analogue). Schild plot analysis indicated that L-648,051 competitively antagonized contractions of guinea pig ileum induced by leukotriene D4 (pA2 7.7) and contractions of trachea induced by leukotrienes D4, E4, and F4 (pA2 7.3, 7.4, and 7.5, respectively). Contractions of guinea pig trachea induced by leukotriene C4 were inhibited in a noncompetitive fashion (Schild plot slope, 0.45). Developed contractions of trachea induced by the leukotrienes were rapidly reversed by L-648,051 greater than FPL-55712 greater than L-649,923. Intravenous L-648,051 selectively blocked bronchoconstriction induced in anaesthetized guinea pigs by intravenous leukotrienes C4, D4, and E4 but not that induced by arachidonic acid, serotonin, U-44069, or acetylcholine. The compound displayed poor activity following intraduodenal administration. The profile of activity for L-648,051 indicates that it may be a useful topical agent for studying the role of leukotrienes in diseases such as bronchial asthma.  相似文献   

4.
The anti-asthmatic activity of AA-2414 [(+/-)-7-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)-7-phenylheptano ic acid] has been studied in vivo and in vitro. Experimental allergic asthma was inhibited by orally administered AA-2414 in a dose-dependent manner. AA-2414, 0.08-1.25 mg/kg (p.o.), inhibited the bronchconstriction in guinea pigs induced by a prostaglandin endoperoxide analogue (U-46619), leukotriene D4 (LTD4), and platelet activating factor (PAF) with a long duration of action. The compound did not inhibit histamine-induced bronchoconstriction. AA-2414 reduced the induction of pulmonary inflation caused by LTD4 aerosol inhalation. AA-2414 competitively inhibited the contractile response to U-46619 in guinea pig tracheal and parenchymal strips and dog saphenous vein strips with pA2 values of 7.69, 8.29 and 6.79, respectively. Furthermore, the contractile responses of guinea pig tracheal strip to PGD2, 9 alpha, 11 beta-PGF2 and PGF2 alpha were inhibited with pA2 values of 7.20, 7.79 and 5.71, respectively. These results suggest that AA-2414, a quinone derivative, is a novel, potent and orally active antagonist of a variety of spasmogenic prostanoids.  相似文献   

5.
We have studied the effect of repeated in vivo antigen exposure on in vitro airway responsiveness in sensitized sheep. Fourteen sheep underwent five biweekly exposures to aerosolized Ascaris suum antigen or saline. Following this exposure regimen, the animals were killed and tracheal smooth muscle and lung parenchymal strips were prepared for in vitro studies of isometric contraction in response to histamine, methacholine, prostaglandin F2 alpha, and a thromboxane A2 analogue. No alteration in tracheal smooth muscle responsiveness was observed between saline- and antigen-exposed tissue. In contrast, by use of lung parenchymal strips as an index of peripheral airway responsiveness, significant increases in responsiveness to histamine and a thromboxane A2 analogue (10(-6) and 10(-5) M) were observed in antigen-exposed tissue compared with saline controls. These results demonstrate that repeated antigen exposure in vivo selectively increase the responsiveness of peripheral lung smooth muscle to certain chemical mediators of anaphylaxis.  相似文献   

6.
L-649,923, Sodium (beta S*, gamma R*)-4-(3-(4-acetyl-3-hydroxy-2-propylphenoxy)propylthio)- gamma- hydroxy-beta-methylbenzenebutanoate is a selective and competitive inhibitor of [3H]leukotriene D4 (Ki value of 400 nM) and to a lesser extent [3H]leukotriene C4 (Ki value of 8.6 microM) binding in guinea-pig lung homogenates. Functionally, it selectively antagonized contractions of guinea pig trachea induced by leukotriene C4, D4, E4, and F4 but not those induced by acetylcholine, histamine, serotonin, prostaglandin F2 alpha, or U-44069 (stable endoperoxide analogue). Schild plot analysis indicated a competitive inhibition of contractions of guinea-pig ileum induced by leukotriene D4 (pA2 8.1) and contractions of guinea-pig trachea induced by leukotrienes E4 and F4 (pA2 7.1 and 6.9, respectively). In contrast, contractions of guinea-pig trachea induced by leukotrienes C4 (pA2 7.2; slope 0.6) and D4 (pA2 7.2; slope 0.7) were inhibited in a noncompetitive fashion. In vivo, intravenously administered L-649,923 selectively blocked bronchoconstriction induced in anesthetized guinea pigs by leukotriene C4 and D4 (ED50 values i.v. 0.38 and 0.26 mg/kg, respectively) but not that induced by histamine, arachidonic acid, serotonin, U-44069, or acetylcholine. Following intraduodenal administration, L-649,923, blocked leukotriene D4 induced bronchoconstriction (5 and 10 mg/kg). The present findings indicate that selective antagonists, such as L-649,923, may be useful for defining the role of leukotrienes in diseases such as bronchial asthma.  相似文献   

7.
The inhibitory effects of KC-404, a novel clinically available anti-asthmatic drug, on leukotriene(LT) D4-, LTC4-, histamine- and acetylcholine(ACh)-induced contractile responses in isolated guinea pig lung parenchymal, tracheal and ileal longitudinal strips were compared using an organ bath system. In lung parenchyma, KC-404 antagonized LTD4 in a competitive fashion, whereas it antagonized histamine noncompetitively. The pA2 value against LTD4 was 7.39. KC-404 hardly antagonized LTC4 and ACh. A ranked order of potency estimated from its minimum effective concentrations (MEC) was LTD4 greater than histamine greater than LTC4 greater than ACh. In trachea, KC-404 antagonized LTC4 and LTD4 in a competitive fashion, while it antagonized histamine noncompetitively. The pA2 values against LTC4 and LTD4 were 5.99 and 6.51, respectively. KC-404 hardly antagonized ACh. A ranked order of the potency estimated from MEC was LTD4 greater than LTC4 greater than histamine greater than ACh. The pA2 values of KC-404 against LTD4 in lung parenchyma and trachea were little or not altered, while its inhibitory effect on histamine-induced contraction in trachea was markedly diminished by the pretreatment of tissues with indomethacin. In ileum, KC-404 noncompetitively antagonized all of the agonists used. A ranked order of the potency estimated from pD2 values was LTD4 divided by LTC4 greater than histamine greater than ACh. These results suggest that KC-404 is a selective antagonist of LTD4 and that it might interact with LTD4 receptor in airway smooth muscles but not in ileum. Another possibility that the drug might interact with LTD4 specific excitation-contraction coupling mechanism was also discussed.  相似文献   

8.
A novel cytochrome P450, CYP4F8, was recently cloned from human seminal vesicles. CYP4F8 was expressed in yeast. Recombinant CYP4F8 oxygenated arachidonic acid to (18R)-hydroxyarachidonate, whereas prostaglandin (PG) D(2), PGE(1), PGE(2), PGF(2alpha), and leukotriene B(4) appeared to be poor substrates. Three stable PGH(2) analogues, 9,11-epoxymethano-PGH(2) (U-44069), 11, 9-epoxymethano-PGH(2) (U-46619), and 9,11-diazo-15-deoxy-PGH(2) (U-51605) were rapidly metabolized by omega2- and omega3-hydroxylation. U-44069 was oxygenated with a V(max) of approximately 260 pmol min(-)(1) pmol P450(-1) and a K(m) of approximately 7 micrometer. PGH(2) decomposes mainly to PGE(2) in buffer and to PGF(2alpha) by reduction with SnCl(2). CYP4F8 metabolized PGH(2) to 19-hydroxy-PGH(2), which decomposed to 19-hydroxy-PGE(2) in buffer and could be reduced to 19-hydroxy-PGF(2alpha) with SnCl(2). 18-Hydroxy metabolites were also formed (approximately 17%). PGH(1) was metabolized to 19- and 18-hydroxy-PGH(1) in the same way. Microsomes of human seminal vesicles oxygenated arachidonate, U-44069, U-46619, U-51605, and PGH(2), similar to CYP4F8. (19R)-Hydroxy-PGE(1) and (19R)-hydroxy-PGE(2) are the main prostaglandins of human seminal fluid. We propose that they are formed by CYP4F8-catalyzed omega2-hydroxylation of PGH(1) and PGH(2) in the seminal vesicles and isomerization to (19R)-hydroxy-PGE by PGE synthase. CYP4F8 is the first described hydroxylase with specificity and catalytic competence for prostaglandin endoperoxides.  相似文献   

9.
The influence of daltroban (BM13.505; SK&F 96148), a thromboxane (Tx) A2-receptor-blocking agent, on responses to the TxA2 mimics U-46619 and U-44069 was investigated in the pulmonary vascular bed of the intact-chest cat under constant-flow conditions. Daltroban (5 mg/kg iv) had no significant effect on mean baseline vascular pressures but significantly decreased responses to the TxA2 mimics without altering responses to prostaglandin (PG) F2 alpha or PGD2 or the PGD2 metabolite 9 alpha, 11 beta-PGF2. Dose-response curves for U-46619 and U-44069 were shifted to the right in a parallel manner, and daltroban had no significant effect on responses to norepinephrine, serotonin, angiotensin II, BAY K 8644, endothelin-(ET) 1, ET-2, or platelet-activating factor (PAF). After administration of daltroban, responses to U-46619 returned to 50% of control in 90 min and responses to the PG and TxA2 precursor arachidonic acid were decreased significantly. These results suggest that daltroban selectively antagonizes TxA2-receptor-mediated responses in a competitive and reversible manner. These data provide support for the hypothesis that discrete TxA2 receptors unrelated to receptors stimulated by PGF2 alpha, PGD2, or 9 alpha, 11 beta-PGF2 are present in the pulmonary vascular bed of the cat. The present data suggest that pulmonary vasoconstrictor responses to PAF and ET peptides are not dependent on activation of TxA2 receptors in the cat.  相似文献   

10.
L-660,711 (3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-dimethyl amino-3-oxo propyl)thio)methyl)thio)propanoic acid is a potent and selective competitive inhibitor of [3H]leukotriene D4 binding in guinea pig (Ki value, 0.22 nM) and human (Ki value, 2.1 nM) lung membranes but is essentially inactive versus [3H]leukotriene C4 binding (IC50 value in guinea pig lung, 23 microM). Functionally it competitively antagonized contractions of guinea pig trachea and ileum induced by leukotriene (LT) D4 (respective pA2 values, 9.4 and 10.5) and LTE4 (respective pA2 values, 9.1 and 10.4) and contractions of human trachea induced by LTD4 (pA2 value, 8.5). L-660,711 (5.8 x 10(-8)M) antagonized contractions of guinea pig trachea induced by LTC4 in the absence (dose ratio = 28) but not in the presence of 45 mM L-serine borate (dose ratio less than 2). L-660,711 (1.9 x 10(-5)M) did not block contractions of guinea pig trachea induced by histamine, acetylcholine, 5-hydroxytryptamine, PGF2 alpha, U-44069, or PGD2. In the presence of atropine, mepyramine, and indomethacin, L-660,711 (1.9 x 10(-5)M) inhibited a small component of the response to antigen on guinea pig trachea but completely blocked anti-IgE-induced contractions of human trachea. L-660,711 (i.v.) antagonized bronchoconstriction induced in anesthetized guinea pigs by i.v. LTC4, LTD4, and LTE4 but did not block bronchoconstriction to arachidonic acid, U-44069, 5-hydroxytryptamine, histamine, or acetylcholine. Intraduodenal L-660,711 antagonized LTD4 (0.2-12.8 micrograms/kg)-induced bronchoconstriction in guinea pigs, and p.o. L-660,711 blocked LTD4- and Ascaris-induced bronchoconstriction in conscious squirrel monkeys and ovalbumin-induced bronchoconstriction in conscious sensitized rats treated with methysergide (3 micrograms/kg). The pharmacological profile of L-660,711 indicates that it is a potent, selective, orally active leukotriene receptor antagonist which is well suited to determine the role played by LTD4 and LTE4 in asthma and other pathophysiologic conditions.  相似文献   

11.
When chopped porcine pulmonary arteries were incubated with calcium ionophore A23187 (1) in the presence of indomethacin there was a time dependent generation of a substance which produced contractions of superfused strips of guinea-pig ileum smooth muscle (GPISM) which were indistinguishable from those induced by LTD4. This material however had a different retention time from LTD4 when subjected to HPLC and co-chromatographed with synthetic LTE4. In addition to LTE4 a substance which had properties indistinguishable from those of LTB4 when assayed on a combination of guinea-pig lung parenchymal strips (GPP) and GPISM (2) was generated from the pulmonary artery. This substance co-chromatographed with synthetic LTB4. The adventitia and intima were the richest source of LTE4, the adventitia releasing slightly more than the intima. The output of LTB4 and LTE4 was inhibited by 6,9-deepoxy-6,9-(phenylimino)-delta 6,8 prostaglandin I (U-60,257). Nordihydroguaiaretic acid (NDGA) inhibited the generation of LTE4.  相似文献   

12.
P Sirois  S Roy  P Borgeat 《Prostaglandins》1983,26(1):91-101
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip in vitro. The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml-1 - 10 ug ml-1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

13.
Bronchoconstriction is a characteristic symptom of various chronic obstructive respiratory diseases such as chronic obstructive pulmonary disease and asthma. Precision-cut lung slices (PCLS) are a suitable ex vivo model to study physiological mechanisms of bronchoconstriction in different species. In the present study, we established an ex vivo model of bronchoconstriction in nonhuman primates (NHPs). PCLS prepared from common marmosets, cynomolgus macaques, rhesus macaques, and anubis baboons were stimulated with increasing concentrations of representative bronchoconstrictors: methacholine, histamine, serotonin, leukotriene D? (LTD?), U46619, and endothelin-1. Alterations in the airway caliber were measured and compared with previously published data from rodents, guinea pigs, and humans. Methacholine induced maximal airway constriction, varying between 74 and 88% in all NHP species, whereas serotonin was ineffective. Histamine induced maximal bronchoconstriction of 77 to 90% in rhesus macaques, cynomolgus macaques, and baboons and a lesser constriction of 53% in marmosets. LTD? was ineffective in marmosets and rhesus macaques but induced a maximum constriction of 44 to 49% in cynomolgus macaques and baboons. U46619 and endothelin-1 caused airway constriction in all NHP species, with maximum constrictions of 65 to 91% and 70 to 81%, respectively. In conclusion, PCLS from NHPs represent a valuable ex vivo model for studying bronchoconstriction. All NHPs respond to mediators relevant to human airway disorders such as methacholine, histamine, U46619, and endothelin-1 and are insensitive to the rodent mast cell product serotonin. Only PCLS from cynomolgus macaques and baboons, however, responded also to leukotrienes, suggesting that among all compared species, these two NHPs resemble the human airway mechanisms best.  相似文献   

14.
The effects of leukotriene D4, serotonin, and methacholine were studied on respiratory smooth muscle in vitro and respiratory responses in vivo in three strains of rats. These were an inbred strain of hyperresponsive rats, Sprague Dawley rats, and Fischer rats. Trachea from inbred rats responded in vitro to serotonin and methacholine but not to leukotrienes or histamine. Parenchyma from inbred rats responded to serotonin, methacholine, and leukotrienes. In vivo respiratory responses in inbred rats were observed after aerosol administration of histamine and serotonin, methacholine, and leukotriene D4. When these in vitro and in vivo experiments were repeated in Sprague Dawley and Fischer rats, a clear correlation was observed between the responses of strains of rats to aerosolized antigen and responses to spasmogenic mediators. It is concluded that inbred rats have a nonspecific bronchial hyperreactivity that contributes to their sensitivity to aerosolized antigen and that they may be a useful model for human asthmatic conditions.  相似文献   

15.
T Jones  D Denis  R Hall  D Ethier 《Prostaglandins》1983,26(5):833-843
Leukotrienes D4 greater than C4 greater than E4 greater than F4 produced qualitatively similar contractions of guinea-pig trachealis, which were antagonized by the SRS-antagonist FPL-55712. Schild analyses indicated that FPL-55712 when tested in a low concentration range (0.57 - 5.7 X 10(-6) M) was a competitive antagonist of LTC4, LTE4 and LTF4 (slope not significantly different from one). The interaction of FPL-55712 with LTD4 may be noncompetitive (slope less than 1). Comparison of the calculated dissociation constants (-log KB) indicated that FPL-55712 was more effective at blocking LTE4 and LTF4 compared to LTC4 and LTD4. In the presence of higher concentrations of FPL-55712 (1.9 X 10(-5) M) the antagonism of LTC4 became noncompetitive. These findings indicate that important differences exist in the interaction of FPL-55712 with the various peptido leukotrienes in guinea pig trachealis. Discovery of more selective antagonists will be needed to determine if multiple receptor subtypes are present in this tissue.  相似文献   

16.
The effects of SQ 29548, a thromboxane (Tx) A2 receptor blocking agent, on responses to the TxA2 mimic U46619 were investigated in the pulmonary vascular bed of the intact-chest cat under constant-flow conditions. The administration of SQ 29548 in doses of 0.25-1 mg/kg iv reduced vasoconstrictor responses to U-46619; however, responses to prostaglandins (PG) F2 alpha and D2 and to serotonin were also decreased. After administration of SQ 29548 in doses of 0.05-0.1 mg/kg iv, responses to U-46619 and U-44069 were reduced significantly, and the dose-response curves for these TxA2 mimics were shifted to the right in a parallel manner at a time when responses to PGF2 alpha and PGD2 were not altered. The low doses of the TxA2 receptor blocking agent significantly reduced responses to the PG and TxA2 precursor arachidonic acid but were without significant effect on vasoconstrictor responses to serotonin; histamine; norepinephrine; angiotensin II; the major PGD2 metabolite 9 alpha,11 beta-PGF2; BAY K 8644, an agent that enhances calcium entry; and endothelin-1. The present data show that at low doses SQ 29548 selectively blocks TxA2 receptor-mediated responses in a competitive and reversible manner in the pulmonary vascular bed. These data suggest that responses to arachidonic acid are mediated in large part by the formation of TxA2 and provide evidence in support of the hypothesis that a discrete TxA2 receptor unrelated to PGF2 alpha or PGD2 receptors is present in undefined resistance vessel elements in the feline pulmonary vascular bed.  相似文献   

17.
Experiments on isolated strips of the non-pregnant rabbit and rat uterus showed the ability of dopamine, noradrenaline, serotonin, acetylcholine, prostaglandin F2 alpha, oxytocin to increase the uterine strips contractile activity. On the other hand, GABA, GABAB receptors agonist phenibut and diazepam inhibit the stimulating effects of the above mentioned substances, thus showing the properties of physiological antagonists of these neuromediators, prostaglandin and oxytocin.  相似文献   

18.
To examine further the possible prostanoid involvement in the influence of the epithelium on guinea-pig tracheal smooth muscle responsiveness, we have analyzed the effects of LTD4, methacholine and histamine on the level of airway smooth muscle tone and on the amounts of PGE2, PGF2 alpha and PGI2 (determined by radioimmunoassay) in the presence and absence of the epithelium. Removal of the epithelium increased the sensitivity of guinea-pig trachea to the contractile effects of LTD4, methacholine and histamine. LTD4 (3-100 nM), methacholine (0.1-10 microM) or histamine (0.3-30 microM) did not increase prostanoid release above control values in either the presence or absence of the epithelium. The unstimulated release of PGE2 and PGF2 alpha, but not PGI2, was decreased in tissues lacking epithelium. Indomethacin (1 microM) reduced the baseline tone to a smaller extent in the absence of epithelium. In the presence but not the absence of the epithelium, indomethacin increased the sensitivity of preparations to the contractile effect of methacholine. The results support the postulate of an epithelium-derived inhibitory factor modulating guinea-pig tracheal smooth muscle responsiveness. The identity of this factor is not known but is not PGI2 and is unlikely to be PGF2 alpha or PGE2. However, the possibility remains that the basal release of PGE2 and/or PGF2 alpha derived from the epithelium may markedly affect the responsiveness of guinea-pig tracheal smooth muscle. Furthermore, the epithelium is a significant source of PGE2 and PGF2 alpha which may be involved in the maintenance of baseline tone.  相似文献   

19.
The generation of lipoxygenase products on the contraction elicited by prostaglandin (PG) F2 alpha was investigated in the guinea-pig isolated trachea. Indomethacin (5 x 10(-6) M) inhibited the response at low concentrations of PGF2 alpha while enhanced the response at higher concentrations of PGF2 alpha. Phenidone (10(-4) M) and nordihydroguaiaretic acid (NDGA, 3 x 10(-5) M) appeared to inhibit the PGF2 alpha response. The PGF2 alpha response augmented by indomethacin was dose-dependently inhibited by NDGA and a leukotriene (LT) antagonist, FPL55712. NDGA had no effect on the contraction elicited by histamine but markedly inhibited the contraction elicited by LTD4. The inhibition by NDGA of the LTD4-induced contraction was abolished in the presence of indomethacin (5 x 10(-6) M). FPL55712 inhibited the LTD4-induced contraction but the extent of the antagonism was not changed by indomethacin. In the presence of indomethacin PGF2 alpha (10(-8) M) did not affect the LTD4 (3 x 10(-9) M) response but significantly enhanced the arachidonic acid (AA, 6.6 x 10(-5) M)-induced contraction. FPL55712 (3 x 10(-6) M) completely inhibited the AA response augmented by PGF2 alpha. These results suggest that lipoxygenase-mediated LT-like substances are released in the response at higher concentrations of PGF2 alpha on the guinea-pig isolated trachea, and the mode of action of PGF2 alpha is different from those of histamine and LTD4.  相似文献   

20.
We studied regional variation in canine trachealis smooth muscle sensitivity and responsiveness to methacholine as well as basal and methacholine-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) and cAMP-dependent protein kinase activity. The trachea between the cricoid cartilage and the carina was divided into three segments of equal length (designated cervical, middle, and thoracic regions), each consisting of approximately 12-14 cartilage rings. Smooth muscle strips from each of the three regions were exposed to cumulative half-log increments of methacholine chloride. The sensitivity (-log EC50) and responsiveness (force per cross-sectional area and force per milligram protein) of the smooth muscle to methacholine in each region was determined from these data. Smooth muscle strips from cervical and thoracic regions were frozen before and after exposure to cumulative half-log increments of methacholine up to each region's previously determined EC50. Frozen samples were assayed for cAMP content or cAMP-dependent protein kinase activity. The relationship between resting tension and methacholine sensitivity and responsiveness were studied. For the size strips we used, 4 g resting tension set the average cervical and thoracic strips at 96 and 101% of their optimal length, respectively. The methacholine EC50 was not affected by a variation in resting tension. Sensitivity to methacholine was 7.1, 6.8, and 6.5 for cervical, middle, and thoracic regions, respectively. The responsiveness of the cervical and thoracic smooth muscle to methacholine was 16.4 and 16.3 g force/mm2, respectively, at an EC50 methacholine. Basal cAMP was lower in cervical smooth muscle than in thoracic. cAMP-dependent protein kinase activity ratios under both basal and EC50 methacholine-stimulated conditions were lower in cervical smooth muscle than in thoracic. We have observed in trachealis smooth muscle an inverse relationship between methacholine sensitivity and either cAMP or cAMP-dependent protein kinase activity. We suggest that cAMP and cAMP-dependent protein kinase play a role in the regulation of airway smooth muscle sensitivity to cholinergic agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号