首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphodiesterase 4 (PDE4) is an intracellular enzyme specifically degrading cAMP, a second messenger exerting inhibitory effects on many inflammatory cells. To investigate whether GPD-1116 (a PDE4 inhibitor) prevents murine lungs from developing cigarette smoke-induced emphysema, the senescence-accelerated mouse (SAM) P1 strain was exposed to either fresh air or cigarette smoke for 8 wk with or without oral administration of GPD-1116. We confirmed the development of smoke-induced emphysema in SAMP1 [air vs. smoke (means +/- SE); the mean linear intercepts (MLI), 52.9 +/- 0.8 vs. 68.4 +/- 4.2 microm, P < 0.05, and destructive index (DI), 4.5% +/- 1.3% vs. 16.0% +/- 0.4%, P < 0.01]. Emphysema was markedly attenuated by GPD-1116 (MLI = 57.0 +/- 1.4 microm, P < 0.05; DI = 8.2% +/- 0.6%, P < 0.01) compared with smoke-exposed SAMP1 without GPD-1116. Smoke-induced apoptosis of lung cells were also reduced by administration of GPD-1116. Matrix metalloproteinase (MMP)-12 activity in bronchoalveolar lavage fluid (BALF) was increased by smoke exposure (air vs. smoke, 4.1 +/- 1.1 vs. 40.5 +/- 16.2 area/microg protein; P < 0.05), but GPD-1116 significantly decreased MMP-12 activity in smoke-exposed mice (5.3 +/- 2.1 area/microg protein). However, VEGF content in lung tissues and BALF decreased after smoke exposure, and the decrease was not markedly restored by oral administration of GPD-1116. Our study suggests that GPD-1116 attenuates smoke-induced emphysema by inhibiting the increase of smoke-induced MMP-12 activity and protecting lung cells from apoptosis, but is not likely to alleviate cigarette smoke-induced decrease of VEGF in SAMP1 lungs.  相似文献   

2.
Cigarette smoke exposure causes vascular remodeling and pulmonary hypertension by poorly understood mechanisms. To ascertain whether cigarette smoke exposure affects production of matrix metalloproteinases (MMPs) in the pulmonary vessels, we exposed C57Bl/6 (C57) mice or mice lacking TNF-alpha receptors (TNFRKO) to smoke daily for 2 wk or 6 mo. Using laser capture microdissection and RT-PCR analysis, we examined gene expression of MMP-2, MMP-9, MMP-12, MMP-13, and tissue inhibitor of metalloproteinase (TIMP-1) and examined protein production by immunohistochemistry for MMP-2, MMP-9, and MMP-12 in small intrapulmonary arteries. At 2 wk, mRNA levels of TIMP-1 and all MMPs were increased in the C57, but not TNFRKO, mice, and immunoreactive protein for MMP-2, MMP-9, and MMP-12 was also increased in the C57 mice. Increased gelatinase activity was identified by in situ and bulk tissue zymography. At 6 mo, only MMP-12 mRNA levels remained increased in the C57 mice, but at a much lower level; however, MMP-2 mRNA levels increased in the TNFRKO mice. We conclude that smoke exposure increases MMP production in the small intrapulmonary arteries but that, with the exception of MMP-12, increased MMP production is transient. MMPs probably play a role in smoke-induced vascular remodeling, as they do in other forms of pulmonary hypertension, implying that MMP inhibitors might be beneficial. MMP production is largely TNF-alpha dependent, further supporting the importance of TNF-alpha in the pathogenesis of cigarette smoke-induced lung disease.  相似文献   

3.

Background

Cigarette smoking induces inflammatory responses in all smokers and is the major risk factor for lung disease such as chronic obstructive pulmonary disease (COPD). In this progressive disease, chronic inflammation in the lung contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated Proline-Glycine-Proline (N-ac-PGP). The generation of this tripeptide is mediated by a multistep pathway involving matrix metalloproteases (MMPs) 8 and 9 and prolyl endopeptidase (PE). Here we investigated whether cigarette smoke extract (CSE) stimulates human PMNs to breakdown whole matrix collagen leading to the generation of the chemotactic collagen fragment N-ac-PGP.

Methodology/Principal Findings

Incubating PMNs with CSE led to the release of chemo-attractant CXCL8 and proteases MMP8 and MMP9. PMNs constitutively expressed PE activity as well as PE protein. Incubating CSE-primed PMNs with collagen resulted in collagen breakdown and in N-ac-PGP generation. Incubation of PMNs with the tripeptide N-ac-PGP resulted in the release of CXCL8, MMP8 and MMP9. Moreover, we tested whether PMNs from COPD patients are different from PMNs from healthy donors. Here we show that the intracellular basal PE activity of PMNs from COPD patients increased 25-fold compared to PMNs from healthy donors. Immunohistological staining of human lung tissue for PE showed that besides neutrophils, macrophages and epithelial cells express PE.

Conclusions

This study indicates that neutrophils activated by cigarette smoke extract can breakdown collagen into N-ac-PGP and that this collagen fragment itself can activate neutrophils, which may lead in vivo to a self-propagating cycle of neutrophil infiltration, chronic inflammation and lung emphysema. MMP-, PE- or PGP-inhibitors can serve as an attractive therapeutic target and may open new avenues towards effective treatment of COPD.  相似文献   

4.
Increased numbers of T lymphocytes are observed in the lungs of patients with chronic obstructive pulmonary disease, but their role in the disease process is not known. We investigated the role of CD8+ T cells in inflammatory cell recruitment and lung destruction in a cigarette smoke-induced murine model of emphysema. In contrast to wild-type C57BL/6J mice that displayed macrophage, lymphocyte, and neutrophil recruitment to the lung followed by emphysema in response to cigarette smoke, CD8+ T cell-deficient (CD8-/-) mice had a blunted inflammatory response and did not develop emphysema when exposed to long-term cigarette smoke. Further studies supported a pathogenetic pathway whereby the CD8+ T cell product, IFN-gamma-inducible protein-10, induces production of macrophage elastase (matrix metalloproteinase 12) that degrades elastin, both causing lung destruction directly and generating elastin fragments that serve as monocyte chemokines augmenting macrophage-mediated lung destruction. These studies demonstrate a requirement for CD8+ T cells for the development of cigarette smoke-induced emphysema and they provide a unifying pathway whereby CD8+ T cells are a central regulator of the inflammatory network in chronic obstructive pulmonary disease.  相似文献   

5.
Cigarette smoke is the major risk factor associated with the development of chronic obstructive pulmonary disease and alters expression of proteolytic enzymes that contribute to disease pathology. Previously, we reported that smoke exposure leads to the induction of matrix metalloproteinase-1 (MMP-1) through the activation of ERK1/2, which is critical to the development of emphysema. To date, the upstream signaling pathway by which cigarette smoke induces MMP-1 expression has been undefined. This study demonstrates that cigarette smoke mediates MMP-1 expression via activation of the TLR4 signaling cascade. In vitro cell culture studies demonstrated that cigarette smoke-induced MMP-1 was regulated by TLR4 via MyD88/IRAK1. Blockade of TLR4 or inhibition of IRAK1 prevented cigarette smoke induction of MMP-1. Mice exposed to acute levels of cigarette smoke exhibited increased TLR4 expression. To further confirm the in vivo relevance of this signaling pathway, rabbits exposed to acute cigarette smoke were found to have elevated TLR4 signaling and subsequent MMP-1 expression. Additionally, lungs from smokers exhibited elevated TLR4 and MMP-1 levels. Therefore, our data indicate that TLR4 signaling, through MyD88 and IRAK1, plays a predominant role in MMP-1 induction by cigarette smoke. The identification of the TLR4 pathway as a regulator of smoke-induced protease production presents a series of novel targets for future therapy in chronic obstructive pulmonary disease.  相似文献   

6.
The pathogenesis of cigarette smoke-induced pulmonary hypertension is not understood. We have previously shown that smoke rapidly and persistently, but discoordinately, upregulates gene expression of mediators that control vasoconstriction, vasoproliferation, and vasorelaxation in small intrapulmonary arteries. To investigate the possibility that smoke also induces endothelial dysfunction, a finding common to other forms of pulmonary hypertension, we exposed guinea pigs to smoke or air (control) daily for 2 wk and then prepared precision-cut lung slices. After exposure to endothelin-1, a vasoconstrictor, intra-acinar arteries in lung slices derived from smoke-exposed animals constricted more rapidly (greater constriction at a given concentration of endothelin) than did vessels from air-exposed animals. To examine relaxation responses, arteries were constricted with the vasoconstrictor U-46619 and then relaxed with progressively increasing doses of acetylcholine. Vessels from smokers had a delayed response to acetylcholine compared with vessels from controls. The NO synthase inhibitor N(G)-nitro-L-arginine methyl ester reduced relaxation in both control and smoke-exposed arteries, whereas the NO donor sodium nitroprusside increased relaxation of the smoke-exposed arteries, confirming that endothelial dysfunction with decreased effective NO production is present. These findings show that precision cut lung slices can be used to examine the physiological effects of cigarette smoke on intra-acinar pulmonary arteries and indicate that even relatively short-term exposure to smoke produces endothelial dysfunction with a resulting tendency to earlier constriction and later relaxation in cigarette smokers. These changes may be important in the development of pulmonary hypertension.  相似文献   

7.
《Free radical research》2013,47(11):1413-1419
Abstract

Recently, we have reported the dysregulation of circulating serotonin (5-hydroxytryptamine, 5-HT) homeostasis in patients with chronic obstructive pulmonary disease (COPD). An increase in metabolism of 5-HT has been reported to induce oxidative stress via monoamine oxidase (MAO)-dependent pathway. The present study aimed at investigating the effect of cigarette smoke exposure on the systemic circulation and local airway 5-HT levels as well as MAO-mediated oxidative pathway using a cigarette smoke-exposed rat model. Male Sprague-Dawley rats (150–200 g) were exposed to either sham air or 4% (v/v, smoke/air) cigarette smoke for 1 hour daily for 56 consecutive days. Sera, bronchoalveolar larvage (BAL) and lung tissues were collected 24 hours after the last exposure. We found a significant reduction in the reduced glutathione (rGSH) and an elevation in advanced oxidation protein products (AOPP), a protein oxidation marker, in the lung of cigarette smoke-exposed group (p?<?0.05). A significant increase in 5-HT was found in serum (p?<?0.05), but not in the BAL or lung, after cigarette smoke exposure. MAO-A activity was significantly elevated in the lung of cigarette smoke-exposed group (p?<?0.05). Furthermore, increased superoxide anion levels were found in lung homogenates of cigarette smoke-exposed rats after incubation with 5-HT (p?<?0.05), which was positively associated with the increase in MAO-A activity (r?=?0.639, p?<?0.05). Our findings supported the presence of GSH disruption and protein oxidation in the lung after cigarette smoke exposure. The metabolism of 5-HT by MAO-A in the lung enhanced cigarette smoke-induced superoxides, which might contribute to the pathogenesis of COPD.  相似文献   

8.
Our recent in vitro results [4] indicate that cigarette smoke induces oxidation of human plasma proteins and extensive oxidative degradation of the guinea pig lung, heart, and liver microsomal proteins, which is almost completely prevented by ascorbic acid. In this paper, we substantiate the in vitro results with in vivo observations. We demonstrate that exposure of subclinical or marginal vitamin C-deficient guinea pigs to cigarette smoke causes oxidation of plasma proteins as well as extensive oxidative degradation of the lung microsomal proteins. Cigarette smoke exposure also results in some discernible damage of the heart microsomal proteins. The oxidative damage has been manifested by SDS-PAGE, accumulation of carbonyl and bityrosine, as well as loss of tryptophan and protein thiols. Cigarette smoke exposure also induces peroxidation of microsomal lipids as evidenced by the formation of conjugated dienes, malondialdehyde, and fluorescent pigment. Cigarette smoke-induced oxidative damage of proteins and peroxidation of lipids are accompanied by marked drop in the tissue ascorbate levels. Protein damage and lipid peroxidation are also observed in cigarette smoke-exposed pair-fed guinea pigs receiving 5 mg vitamin C/animal/day. However, complete protection against protein damage and lipid peroxidation occurs when the guinea pigs are fed 15 mg vitamin C/animal/day. Also, the cigarette smoke-induced oxidative damage of proteins and lipid is reversed after discontinuation of cigarette smoke exposure accompanied by ascorbate therapy. The results, if extrapolated to humans, indicate that comparatively large doses of vitamin C may protect the smokers from cigarette smoke-induced oxidative damage and associated degenerative diseases.  相似文献   

9.
Cigarette smoking is the strongest risk factor for emphysema. However, sensitivity to cigarette smoke-induced emphysema is highly variable, and numerous genetic and environmental factors are thought to mitigate lung response to injury. We report that the quantity of functional elastin in the lung is an important modifier of both lung development and response to injury. In mice with low levels of elastin, lung development is adversely affected, and mice manifest with congenital emphysema. Animals with intermediate elastin levels exhibit normal alveolar structure but develop worse emphysema than normal mice following cigarette smoke exposure. Mechanical testing demonstrates that lungs with low levels of elastin experience greater tissue strains for any given tissue stress compared with wild-type lungs, implying that force-mediated propagation of lung injury through alveolar wall failure may worsen the emphysema after an initial enzymatic insult. Our findings suggest that quantitative deficiencies in elastin predispose to smoke-induce emphysema in animal models and suggest that humans with altered levels of functional elastin could have relatively normal lung function while being more susceptible to smoke-induced lung injury.  相似文献   

10.
Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE) and its variants in chronic obstructive pulmonary disease (COPD). In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/-) exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.  相似文献   

11.
It has been hypothesized that the destruction of lung tissue observed in smokers with chronic obstructive pulmonary disease and emphysema is mediated by neutrophils recruited to the lungs by smoke exposure. This study investigated the role of the chemokine receptor CXCR2 in mediating neutrophilic inflammation in the lungs of mice acutely exposed to cigarette smoke. Exposure to dilute mainstream cigarette smoke for 1 h, twice per day for 3 days, induced acute inflammation in the lungs of C57BL/6 mice, with increased neutrophils and the neutrophil chemotactic CXC chemokines macrophage inflammatory protein (MIP)-2 and KC. Treatment with SCH-N, an orally active small molecule inhibitor of CXCR2, reduced the influx of neutrophils into the bronchoalveolar lavage (BAL) fluid. Histological changes were seen, with drug treatment reducing perivascular inflammation and the number of tissue neutrophils. beta-Glucuronidase activity was reduced in the BAL fluid of mice treated with SCH-N, indicating that the reduction in neutrophils was associated with a reduction in tissue damaging enzymes. Interestingly, whereas MIP-2 and KC were significantly elevated in the BAL fluid of smoke exposed mice, they were further elevated in mice exposed to smoke and treated with drug. The increase in MIP-2 and KC with drug treatment may be due to the decrease in lung neutrophils that either are not present to bind these chemokines or fail to provide a feedback signal to other cells producing these chemokines. Overall, these results demonstrate that inhibiting CXCR2 reduces neutrophilic inflammation and associated lung tissue damage due to acute cigarette smoke exposure.  相似文献   

12.
The senescence-accelerated mouse (SAM) is a naturally occurring animal model for accelerated aging after normal development and maturation. SAMP1 strain was reported to show age-related structural and functional changes in lung and to be a murine model of senile lung. We postulated that aging of lung is an important intrinsic process for development of emphysema and even in a short period of tobacco smoke exposure may be able to generate emphysema. At age 12 wk, SAMP1 inhaled air or 1.5% tobacco smoke (total particulate matter 23.9 mg/m3) through the nose for 30 min/day, 5 days/wk, and for 8 wk. The mean linear intercepts (MLI) and destructive index (DI) of lung were significantly increased [air vs. smoke (means+/-SE); MLI, 68.76+/-0.69 vs. 75.34+/-1.70 microm, P<0.05 and DI, 8.61+/-0.38 vs. 16.18+/-1.54%, P<0.05], whereas no significant changes were observed in SAMR1, control mice that show normal aging. In contrast, smoke-induced emphysema was completely prevented by concomitant ingestion of lycopene given as tomato juice [MLI: smoke with/without lycopene (mean+/-SE), 62.87+/-0.8 vs. 66.90+/-1.33 microm, P<0.05]. Smoke exposure increased apoptosis and active caspase-3 of airway and alveolar septal cells and reduced VEGF in lung tissues, but tomato juice ingestion significantly reduced apoptosis and increased tissue VEGF level. We conclude that SAMP1 is a useful model for tobacco smoke-induced emphysema and a valuable tool to explore both pathophysiological mechanisms and the effect of therapeutic intervention on smoke-induced emphysema.  相似文献   

13.
14.
《Phytomedicine》2014,21(12):1638-1644
Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD), which is mediated by lung infiltration with inflammatory cells, enhanced oxidative stress, and tissue destruction. Anti-malarial drug artesunate has been shown to possess anti-inflammatory and anti-oxidative actions in mouse asthma models. We hypothesized that artesunate can protect against cigarette smoke-induced acute lung injury via its anti-inflammatory and anti-oxidative properties. Artesunate was given by oral gavage to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage (BAL) fluid and lungs were collected for analyses of cytokines, oxidative damage and antioxidant activities. Bronchial epithelial cell BEAS-2B was exposed to cigarette smoke extract (CSE) and used to study the mechanisms of action of artesunate. Artesunate suppressed cigarette smoke-induced increases in BAL fluid total and differential cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Artesunate promoted anti-oxidant catalase activity and reduced NADPH oxidase 2 (NOX2) protein level in the lungs from cigarette smoke-exposed mice. In BEAS-2B cells, artesunate suppressed pro-inflammatory PI3 K/Akt and p44/42 MAPK signaling pathways, and increased nuclear Nrf2 accumulation in response to CSE. Artesunate possesses anti-inflammatory and anti-oxidative properties against cigarette smoke-induced lung injury, probably via inhibition of PI3K and p42/22 MAPK signaling pathways, augmentation of Nrf2 and catalase activities, and reduction of NOX2 level. Our data suggest that artesunate may have therapeutic potential for treating COPD.  相似文献   

15.
The molecular events leading to emphysema development include generation of oxidative stress and alveolar cell apoptosis. Oxidative stress upregulates ceramides, proapoptotic signaling sphingolipids that trigger further oxidative stress and alveolar space enlargement, as shown in an experimental model of emphysema due to VEGF blockade. As alveolar cell apoptosis and oxidative stress mutually interact to mediate alveolar destruction, we hypothesized that the oxidative stress generated by ceramide is required for its pathogenic effect on lung alveoli. To model the direct lung effects of ceramide, mice received ceramide intratracheally (Cer(12:0) or Cer(8:0); 1 mg/kg) or vehicle. Apoptosis was inhibited with a general caspase inhibitor. Ceramide augmentation shown to mimic levels found in human emphysema lungs increased oxidative stress, and decreased, independently of caspase activation, the lung superoxide dismutase activity at 48 h. In contrast to their wild-type littermates, transgenic mice overexpressing human Cu/Zn SOD were significantly protected from ceramide-induced superoxide production, apoptosis, and air space enlargement. Activation of lung acid sphingomyelinase in response to ceramide treatment was abolished in the Cu/Zn SOD transgenic mice. Since cigarette smoke-induced emphysema in mice is similarly ameliorated by the Cu/Zn SOD overexpression, we hypothesized that cigarette smoke may induce ceramides in the mouse lung. Utilizing tandem mass spectrometry, we documented increased lung ceramides in adult mice exposed to cigarette smoke for 4 wk. In conclusion, ceramide-induced superoxide accumulation in the lung may be a critical step in ceramide's proapoptotic effect in the lung. This work implicates excessive lung ceramides as amplifiers of lung injury through redox-dependent mechanisms.  相似文献   

16.
Cigarette smoking is known to contribute to inflammatory diseases of the respiratory tract by promoting recruitment of inflammatory-immune cells such as neutrophils and perhaps by altering neutrophil functional properties. We investigated whether acrolein, a toxic unsaturated aldehyde found in cigarette smoke, could directly affect neutrophil function. Exposure of freshly isolated human neutrophils to acrolein markedly inhibited spontaneous neutrophil apoptosis as indicated by loss of membrane asymmetry and DNA fragmentation and induced increased neutrophil production of the chemokine interleukin-8 (IL-8). Acrolein (1--50 microM) was found to induce marked activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPKs), and inhibition of p38 MAPK activation by SB-203580 prevented acrolein-induced IL-8 release. However, inhibition of either ERK or p38 MAPK did not affect acrolein-dependent inhibition of apoptosis. Acrolein exposure prevented the activation of caspase-3, a crucial step in the execution of neutrophil apoptosis, presumably by direct inhibition of the enzyme. Our results indicate that acrolein may contribute to smoke-induced inflammatory processes in the lung by increasing neutrophil recruitment and reducing neutrophil clearance by apoptosis.  相似文献   

17.

Background

While the presence of the chitinase-like molecule YKL40 has been reported in COPD and asthma, its relevance to inflammatory processes elicited by cigarette smoke and common environmental allergens, such as house dust mite (HDM), is not well understood. The objective of the current study was to assess expression and function of BRP-39, the murine equivalent of YKL40 in a murine model of cigarette smoke-induced inflammation and contrast expression and function to a model of HDM-induced allergic airway inflammation.

Methods

CD1, C57BL/6, and BALB/c mice were room air- or cigarette smoke-exposed for 4 days in a whole-body exposure system. In separate experiments, BALB/c mice were challenged with HDM extract once a day for 10 days. BRP-39 was assessed by ELISA and immunohistochemistry. IL-13, IL-1R1, IL-18, and BRP-39 knock out (KO) mice were utilized to assess the mechanism and relevance of BRP-39 in cigarette smoke- and HDM-induced airway inflammation.

Results

Cigarette smoke exposure elicited a robust induction of BRP-39 but not the catalytically active chitinase, AMCase, in lung epithelial cells and alveolar macrophages of all mouse strains tested. Both BRP-39 and AMCase were increased in lung tissue after HDM exposure. Examining smoke-exposed IL-1R1, IL-18, and IL-13 deficient mice, BRP-39 induction was found to be IL-1 and not IL-18 or IL-13 dependent, while induction of BRP-39 by HDM was independent of IL-1 and IL-13. Despite the importance of BRP-39 in cellular inflammation in HDM-induced airway inflammation, BRP-39 was found to be redundant for cigarette smoke-induced airway inflammation and the adjuvant properties of cigarette smoke.

Conclusions

These data highlight the contrast between the importance of BRP-39 in HDM- and cigarette smoke-induced inflammation. While functionally important in HDM-induced inflammation, BRP-39 is a biomarker of cigarette smoke induced inflammation which is the byproduct of an IL-1 inflammatory pathway.  相似文献   

18.
Acute cigarette smoke exposure of the airways (two cigarettes twice daily for three days) induces acute inflammation in mice. In this study, we show that airway inflammation is dependent on Toll-like receptor 4 and IL-1R1 signaling. Cigarette smoke induced a significant recruitment of neutrophils in the bronchoalveolar space and pulmonary parenchyma, which was reduced in TLR4-, MyD88-, and IL-1R1-deficient mice. Diminished neutrophil influx was associated with reduced IL-1, IL-6, and keratinocyte-derived chemokine levels and matrix metalloproteinase-9 activity in the bronchoalveolar space. Further, cigarette smoke condensate (CSC) induced a macrophage proinflammatory response in vitro, which was dependent on MyD88, IL-1R1, and TLR4 signaling, but not attributable to LPS. Heat shock protein 70, a known TLR4 agonist, was induced in the airways upon smoke exposure, which probably activates the innate immune system via TLR4/MyD88, resulting in airway inflammation. CSC-activated macrophages released mature IL-1beta only in presence of ATP, whereas CSC alone promoted the TLR4/MyD88 signaling dependent production of IL-1alpha and pro-IL-1beta implicating cooperation between TLRs and the inflammasome. In conclusion, acute cigarette exposure results in LPS-independent TLR4 activation, leading to IL-1 production and IL-1R1 signaling, which is crucial for cigarette smoke induced inflammation leading to chronic obstructive pulmonary disease with emphysema.  相似文献   

19.
It has been proposed that the development of COPD is driven by premature aging/premature senescence of lung parenchyma cells. There are data suggesting that old mice develop a greater inflammatory and lower anti-oxidant response after cigarette smoke compared to young mice, but whether these differences actually translate into greater levels of disease is unknown. We exposed C57Bl/6 female mice to daily cigarette smoke for 6 months starting at age 3 months (Ayoung@) or age 12 months (Aold@), with air-exposed controls. There were no differences in measures of airspace size between the two control groups and cigarette smoke induced exactly the same amount of emphysema in young and old. The severity of smoke-induced small airway remodeling using various measures was identical in both groups. Smoke increased numbers of tissue macrophages and neutrophils and levels of 8-hydroxyguanosine, a marker of oxidant damage, but there were no differences between young and old. Gene expression studies using laser capture microdissected airways and parenchyma overall showed a trend to lower levels in older animals and a somewhat lesser response to cigarette smoke in both airways and parenchyma but the differences were usually not marked. Telomere length was greatest in young control mice and was decreased by both smoking and age. The senescence marker p21Waf1 was equally upregulated by smoke in young and old, but p16INK4a, another senescence marker, was not upregulated at all. We conclude, in this model, animal age does not affect the development of emphysema and small airway remodeling.  相似文献   

20.
Rats were subjected to acute lung injury by the intra-alveolar formation of IgG immune complexes of bovine serum albumin (BSA) and anti-BSA. In this model of injury, complement activation occurs and large numbers of neutrophils invade the interstitium and alveolar space. In the present study, animals were treated with intratracheal catalase concomitantly with anti-BSA or after a lag period of 5-120 min. Catalase treatment at time-zero or at 5 min post injury failed to prevent lung injury as indicated by permeability change, histological features, and neutrophil influx. However, treatment after a delay of 15-30 min (but not 120 min) afforded substantial protection. Consistent with past findings [19], lung injury was accompanied by an accumulation of matrix metalloproteinase 9 (MMP-9) in bronchoalveolar lavage (BAL) fluid. There was a strong correlation between inhibition of injury and reduction in MMP-9 levels. In vitro studies conducted in parallel revealed that unstimulated alveolar macrophages did not produce measurable MMP-9, while there was a large induction following exposure to the same immune complexes that initiated injury in vivo. MMP-2 was also slightly upregulated under the same conditions. Concomitant treatment with catalase greatly inhibited MMP-9 production by macrophages in response to immune complexes, but this treatment had little effect on basal production of either MMP-9 or MMP-2 by macrophage. The same concentration of catalase that suppressed MMP-9 elaboration also inhibited the production of tumor necrosis factor alpha. In contrast, when neutrophils were treated with catalase and then exposed to immune complexes, the antioxidant failed to prevent the release of either MMP-2 or MMP-9. Taken together, these findings demonstrate that antioxidant treatment interferes with elaboration of MMPs by alveolar macrophages. Protection against lung injury is correlated with reduction in MMP levels in the BAL fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号