首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crop production and management under saline conditions   总被引:1,自引:0,他引:1  
A. Meiri  Z. Plaut 《Plant and Soil》1985,89(1-3):253-271
Summary This review evaluates management practices that may minimize yield reduction under saline conditions according to three strategies: (I) control of root-zone salinity; (II) reduced damage to the crop; (III) reduced damage to individual plants. Plant response to salinity is described by an unchanged yield up to a threshold soil salinity (a), then a linear reduction in relative yield (b), to a maximum soil salinity that corresponds to zero yield (Yo). Strategies I and II do not take into consideration any change in the parameters of the response curve, while strategy III is aimed at modifying them.Control of root zone salinity is obtained by irrigation and leaching. From the review of existing data it is concluded that the effective soil salinity parameter should be taken as the mean electrical conductivity of the saturated paste extract or of the soil solution over time and space. Several irrigation and leaching practices are discussed. It is shown that intermittent leaching is more advantageous than leaching at each irrigation. Specific cultivation and irrigation practices that result in soil salinity reduction adjacent to young seedlings and the use of water of low salinity at specifically sensitive growth stages may be highly beneficial. Recent data do not show that reduced irrigation intervals improve crop response more under saline than under nonsaline irrigation. Alternate use of water of different salt concentrations results in mixing in the soil and the crop responds to the mean water salinity.Reduced damage at the fiel level when soil or irrigation water salinity is too high to maintain full yield of single plants requires a larger crop stand. For row crops reduced inter-row spacing is more effective than reduced intra-row spacing.Reduced damage at the plant level while the salinity tolerance of the plants remains constant shows up in the response curve parameters as larger threshold and slope and constant salinity at zero yield. This is the effect of a reduced atmospheric water demand that results in reduced stress in the plant under given salinity. Management can also change the salt tolerance of the crop. This will show up as higher salinity at zero yield, as well as changes in threshold and slope. Such changes in the response curve were found at different growth stages, under different atmospheric CO2, under different fertilization, and when sprinkler irrigation was compared with drip irrigation.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1111-E 1984 series.  相似文献   

2.
3.
Samples of malformed and healthy panicles of mango (Mangifera indica L.) as well as leaves and shoots bearing them were collected at different stages of development (fully swollen buds, bud inception, fully grown panicles prior to full bloom and at full bloom) over two consecutive years and were analysed for their macro- and micronutrient status. In addition, malformed and healthy seedlings were collected and analysed. Malformed panicles were found to be significantly higher in N at all the developmental stages except at bud inception. Phosphorus and K also tended to accumulate in malformed panicles at later stages of their development. In general, malformed panicles exhibited lower levels of P, K and Ca than healthy panicles. The differences in levels of Mg and S in malformed and healthy panicles were not significant. All micronutrients were in much lower concentrations in malformed panicles except for Mn which appears to accumulate in malformed panicles particularly at the early stages of development. The leaves on the shoots bearing malformed panicles also showed a tendency to accumulate N, while P, Mg and S were always higher in leaves on shoots bearing healthy panicles. The leaves on shoots bearing healthy panicles had lower levels of Fe, Cu and Mn, whereas levels of Zn and B tended to be higher in leaves on shoots bearing malformed panicles. The nutrient concentration differences between the two kinds of shoots were generally nonsignificant (P=0.05), except for K and S which were significantly lower in shoots bearing malformed panicles. The shoots bearing malformed panicles showed significantly (P=0.05) higher levels of almost all nutrients compared with shoots bearing healthy panicles. Vegetative malformation was found to be associated significantly (p=0.05) with higher amounts of all nutrients except Ca which was significantly higher in healthy seedlings. The present study, therefore, seems to point to lower Ca as one of the pre-disposing factors causing malformation in mango.A part of Ph.D. thesis of the senior author.A part of Ph.D. thesis of the senior author.  相似文献   

4.
Salinity is a widespread adverse environmental problem globally, and significantly limits crop production. In this study, the possibility of enhancing salinity stress tolerance of Swiss chard (Beta vulgaris L. var. cicla) by 5-aminolevulinic acid (ALA) foliar application was investigated. The Swiss chard plants were grown in hydroponic culture. Twelve-week-old uniform seedlings were treated by 0 and 40 mM saline regimes generated by the mixture of sodium chloride and sodium sulfate (molar ratio NaCl:Na2SO4 = 9:1), and were foliar-sprayed with 0 and 60 μM L?1 ALA (every 3 days) for 6 days; then the plants were treated for another 7 days (every 3 day) with increased concentration of salinity and ALA, 80 mM and 120 μM L?1. Salinity without ALA application significantly decreased plant growth [43 % in shoot dry weight (DW), 21 % in root DW, 24 % in relative growth rate (RGR), 43 % in leaf area (LA)], water uptake [20.8 % in relative water content (RWC), 47.9 % in osmotic potential (OP)], chlorophyll (Chl) a content (10 %), Pn (36 %), Gs (72 %) and Tr (59 %) compared with those in control plants; however, under saline conditions, ALA foliar application improved plant growth (49.7 % in shoot DW, 27 % in root DW, 42.3 % in RGR, 72.1 % in LA) and increased RWC (12 %), Chl a content (10 %) and photosynthetic parameters (27 % in Pn, 28 % in Gs, 14 % in Tr) compared with those in untreated plants. Salinity significantly increased Na+ content, resulting in the reduction of Mg2+ and K+ contents. ALA foliar application alleviated ionic toxicity through the reduction of Na+ content and Na+/K+ ratio. On the other hand, it increased total nitrogen and glycine betaine (GB) content. ALA foliar application slightly reduced malondialdehyde (MDA) content, indicating that ALA has the potential to alleviate oxidative stress in salinity-stressed Swiss chard.  相似文献   

5.
Three contrasted genotypes of Musa spp. (M. acuminata cv Grande Naine, M. acuminata spp. Banksii and M. balbisiana spp. Tani) were grown for 6 weeks under optimal conditions in hydroponics and were submitted to a wide range of Si supply (0–1.66 mM Si) to quantify the Si uptake and distribution in banana, as well as the effect of Si on banana growth. The level of Si supply did not affect plant growth, nor the rate of water and nutrient uptake. The rate of Si uptake and the Si concentration in plant tissues increased markedly with the Si supply. At the highest Si concentrations (1.66 mM), silicon absorption was essentially driven by mass flow of water (passive transport). However, at lower Si concentrations (0.02–0.83 mM), it was higher than its uptake by mass flow and caused the depletion of silicon in the nutrient solution, suggesting the existence of active processes in silicon transport. The distribution of silicon among shoot organs (pseudostem < petiole and midrib < young lamina < old leaf) confirmed the major role of transpiration in silicon accumulation and was not dependent on silicon supply. However, other mechanisms of transport might be operating in the roots and in the petiole and midrib of young leaves, whose silicon concentration was unexpectedly high at low Si supply (0.02 mM) compared to higher levels of Si. The three genotypes did not exhibit consistent differences in their responses to silicon supply.  相似文献   

6.
7.
Salt Secretion in Aeluropus litoralis (Willd.) Parl.   总被引:6,自引:0,他引:6  
POLLAK  G.; WAISEL  Y. 《Annals of botany》1970,34(4):879-888
The effect of ion composition and concentration in the rootmedium on salt secretion by Aeluropus litoralis was investigated.The presence of a high ionic concentration in the medium stimulatedthe secretion process. The sodium concentration in the secretedfluid was found to be always higher than its concentration inthe medium. A positive correlation was found between the outersodium chloride concentration and the amount of sodium secretedand/or leaf contents. Sodium secretion exhibited a high efficiencyin excluding excess sodium from leaftissues. Sodium retentionin the leaves occurred in relatively low rates. The secretion mechanisms were found to be highly selective tosodium, opposing potassium and calcium. In contrast, potassiumand calcium were retained in the leaves to a greater degreethan sodium. Antagonistic relationships between sodium and potassiumand sodium and calcium were observed in secretion. The secreted fluid contains also various organic substances.Several interpretations to the results in connection with theproposed hypotheses to the mechanism of salt secretion werediscussed.  相似文献   

8.
Young shoots or sprouts of common bamboos are used as food in third world countries. Evidences suggest the presence of cyanogenic glucoside like anti-thyroidal substance in bamboo shoots (BS) but effect of prolonged BS consumption on thyroid status under conditions of varying iodine nutriture remains unexplored. The study was undertaken to evaluate goitrogenic content, in vitro anti thyroid peroxidase (TPO) activity and in vivo anti thyroid potential of BS with and without extra iodide. Fresh BS contains high cyanogenic glucoside (551 mg/kg), followed by thiocyanate (24mg/kg) and glucosinolate (9.57mg/kg). In vitro inhibition in TPO activity was found with raw, raw boiled and cooked extracts. Inhibition constant (IC50) and PTU equivalence of fresh BS were 27.5+/-0.77 microg and 3.27 respectively. Extra iodide in the incubation media reduced TPO inhibition induced by BS but could not cancel it. Thyroid weight, TPO activity and total serum thyroid hormone levels of BS fed animals for 45 and 90 days respectively were determined and compared with controls. Significant increase in thyroid weight as well as higher excretion of thiocyanate and iodine along with marked decrease in thyroid peroxidase activity, T4 and T3 levels were observed in BS fed group. Chronic BS consumption gradually developed a state of hypothyroidism. Extra iodide had reduced the anti-thyroidal effect of BS to an extent but could not cancel it because of excessive cyanogenic glucoside, glucosinolate and thiocyanate present in it.  相似文献   

9.
Salinity stress is limiting growth and productivity of plants in many areas of the world. Plants adopted different strategies to minimize the effect of salt stress. A pot experiment was conducted to investigate the morphological and physiological changes produced in Canola (Brassica napus) by exogenous application of ellagic acid (EA) under saline conditions. EA is an antioxidant, expected to reduce the effect of salinity stress. The seeds of two canola cultivars, Rainbow and Oscar, were soaked for 6?h with different concentrations of EA (0, 55 and 110?µg/ml). The soaked seeds were sown in small pots. Salt stress was imposed on the plants by applying NaCl solutions of different concentrations (0, 60 and 120?mM) and the duration of stress was for four weeks. Salinity stress reduced seed germination and disturbed the morphological and physiological attributes of B. napus. Application of EA as seed soaking reduced the effect of salinity and enhanced the growth of plants. Overall, we could confirm a significant role of EA by inducing salinity tolerance in B. napus.  相似文献   

10.
11.
M. Reuveni 《Biologia Plantarum》1992,34(3-4):181-191
The effect of growth in saline medium on the activity of two ATP utilizing enzymes was studied. Hexokinase in carrot (Daucus carota L.) cells grown in suspension culture either in the absence or presence of 150 ml NaCl, and tonoplast H+-ATPase in tobacco (Nicotiana tabacum L. cv. Wisconsin 38) cells grown in suspension culture either in the absence of presence of 428 mM NaCl. There was no difference in the pH profiles, NaCl sensitivity and kinetic parameters towards glucose of hexokinase activities from carrot cells grown in the presence or the absence of NaCl, but the activity from cells grown in the presence of NaCl was more resistant to inhibition by N-ethylmaleimide and to inactivation by heat. Two separate apparent Km values toward ATP were delineated in the extract from cells grown in presence of NaCl while extracts from cells grown in the absence of NaCl had only one apparent Km value. The tonoplast H+-ATPase from NaCl grown tobacco cells showed changed kinetic compared to this activity from cells grown in the absence of NaCl. These data may indicate that growth in NaCl results in the appearance of isozymic activity that enhances the ability of plant cells to utilize metabolic energy more efficiently.  相似文献   

12.
13.
Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives   总被引:1,自引:0,他引:1  
Quinoa (Chenopodium quinoa Willd.) originated in the Andean region of South America; this species is associated with exceptional grain nutritional quality and is highly valued for its ability to tolerate abiotic stresses. However, its introduction outside the Andes has yet to take off on a large scale. In the Andes, quinoa has until recently been marginally grown by small-scale Andean farmers, leading to minor interest in the crop from urban consumers and the industry. Quinoa breeding programs were not initiated until the 1960s in the Andes, and elsewhere from the 1970s onwards. New molecular tools available for the existing quinoa breeding programs, which are critically examined in this review, will enable us to tackle the limitations of allotetraploidy and genetic specificities. The recent progress, together with the declaration of “The International Year of the Quinoa” by the Food and Agriculture Organization of the United Nations, anticipates a bright future for this ancient species.  相似文献   

14.
15.
Yuncai Hu  Urs Schmidhalter 《Planta》1998,204(2):212-219
Wheat leaf growth is known to be spatially affected by salinity. The altered spatial distribution of leaf growth under saline conditions may be associated with spatial changes in tissue mineral elements. The objective of this study was to evaluate the spatial distributions of mineral elements and their net deposition rates in the elongating and mature zones of leaf 4 of the main stem of spring wheat (Triticum aestivum L. cv. Lona) during its linear growth phase under saline soil conditions. Plants were grown in an illitic-chloritic silty loam with 0 and 120 mM NaCl. Three days after emergence of leaf 4, sampling was begun at 3 and 13 h into the 16-h light period. Spatial distributions of fresh weight (FW), dry weight (DW), and Na+, K+, Cl, NO 3, Ca2+, Mg2+, total P, and total N in the elongating and mature tissues were determined on a millimeter scale. The patterns of spatial distribution of Na+, Cl, K+, NO3 , and Ca2+ in the growing leaves were affected by salinity, while those of Mg2+, total P, and total N were not. Sodium, K+, Cl, Ca2+, Mg2+, and total N concentrations (mmol · kg−1 FW) were consistently higher at 120 mM NaCl than at 0 mM NaCl along the leaf axis from the leaf base, whereas NO3 concentration was lower at 120 mM NaCl. Deposition rates of all nutrients were greatest in the elongation zone. The elongation zone was the strongest sink for mineral elements in the leaf tissues. Local net deposition rates of Na+, Cl, Ca2+, and Mg2+ (mmol · kg−1 FW · h−1) in the most actively elongating zone were enhanced by 120 mM NaCl, whereas for NO3 this was depressed. The lower supply of NO 3 to growing leaves may be responsible for the inhibition of growth under saline conditions. Higher tissue concentrations of Na+ and Cl may cause ion imbalance but probably did not result in ion toxicity in the growing leaves. Potassium, Ca2+, Mg2+, total P, and total N are less plausibly responsible for the reduction in leaf growth in this study. Higher tissue K+ and Ca2+ concentrations at 120 mM NaCl are probably due to the presence of high Ca2+ in the soil of this study. Received: 13 March 1997 / Accepted: 9 June 1997  相似文献   

16.
17.
Rice is relatively sensitive to salinity and is classified as a silicon accumulator. There have been reports that silicon can reduce sodium uptake in crop grasses in saline conditions, but the mechanism by which silicon might alleviate salinity damage is unclear. We report on the effects of silicon on growth, gas exchange and sodium uptake in rice genotypes differing in salt tolerance. In non-saline media there were no effects of supplementary silicate upon shoot fresh or dry weight or upon root dry weight, indicating that the standard culture solution was not formally deficient with respect to silicon. Plants grown with supplementary silicate had slightly, but significantly, shorter leaves than plants grown in a standard culture solution. Salinity reduced growth and photosynthetic gas exchange. Silicate supplementation partly overcame the reduction in growth and net photosynthesis caused by salt. This amelioration was correlated with a reduction in sodium uptake. Silicate supplementation increased the stomatal conductance of salt-treated plants, showing that silicate was not acting to reduce sodium uptake via a reduction in the transpiration rate. Silicate reduced both sodium transport and the transport of the apoplastic tracer trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS). This implies that the mode of action of silicate was by partial blockage of the transpirational bypass flow, the pathway by which a large proportion of the uptake of sodium in rice occurs. Mechanisms by which silicate might reduce the transpirational bypass flow directly are discussed.  相似文献   

18.
Summary Field studies were carried out to study the influence of seasonal variations in salinity and soil moisture profiles due to fluctuating water table on the performance of 16 tree species. Over a yearly cycle water table having an EC of 2–46 mmhos/cm fluctuated between 10–140 cm from the surface. Seasonal variation in salinity profiles indicated that subsurface planting (30 cm below surface) provides less hostile saline environment to the roots. Due to genetic differences, species of trees differed in their ability to withstand salinity and aeration stresses individually and simultaneously. In areas where salinity is not associated with high water table conditions, tree species likeAcacia auriculiformis, Terminalia arjuna andLeucaena leucocephala can be grown. Tree species likeCasuarina equisetifolia Tamarix articulata andProsopis juliflora can be planted where high salinity or high water table conditions exist separately or simultaneously. If planting occurs on ridges,Acacia auriculiformis, Acacia nilotica andTerminalia arjuna can also be grown in these conditions.  相似文献   

19.
To determine whether ABA accumulation inhibits or promotes shoot growth under stress, an ABA-deficient mutant tomato, sitiens, and its wild-type, the cultivar Rheinlands Rhum, were exposed to moderate salinity stress. Plants were grown at 75 m M NaCl for 2 weeks under conditions of moderate or high relative humidity (70% and 95% RH, respectively). At 70% RH, shoot DW and relative growth rate were reduced more in sitiens than in the cultivar, but the major difference between genotypes was in the degree of injury suffered by older leaves. Most leaves of sitiens died after 2 weeks, but those of the cultivar remained alive. When plants were grown at 95% RH, to maximize the leaf water status of both genotypes, there was no significant effect of salt on shoot DW of either genotype. However, there was still considerable leaf death in sitiens whereas no visible injury appeared in the cultivar. Cl accumulated to higher levels in leaf tissues than Na+, but to similar concentrations in both genotypes, and so could not explain the injury in the sitiens leaves. The results indicate that ABA maintains rather than inhibits new growth under stress, and has a major effect on preservation of older leaves.  相似文献   

20.
Abstract The rates of uptake of nitrate-N per unit length; surface area and volume of root were measured in solution depletion experiments conducted in a root laboratory, using intact roots of two 4.5-year-old apple trees (Discovery/M.9 and Worcester Pearmain/M.9) at two different depths in the soil profile. In Discovery/M.9, NO3? uptake rate per unit root was constant over the 20-200 mmol m?3 range of solution concentration. In Worcester/M.9, the uptake rate per unit root over the 200-150 mmol m?3 range (corresponding to a ‘lag’ phase) was lower than that over 150-20 mmol m?3. The uptake rates after the lag phase at depths of 46 and 104 cm were ca. 1.3 and 5.0 times greater than those in Discovery/M.9 at the 46 and 110 cm depths, respectively. The concentration below which net uptake was zero was ca. 1 mmolm?3. In Discovery/M.9, the uptake rate per unit root at the 46cm depth was about 2.8 times that at 110 cm whereas in Worcester/M.9, the uptake rates at 46cm depth were about 1.8 and 1.4 times lower than those at 104cm over the solution concentration ranges 200-150 and 150-20 mmol m?3, respectively. Only small differences were observed in uptake rates per unit root between 1400-1700 h, 2400-0400 h, and 0700-1100 h. For successive 5°C-increments in root temperature between 5 and 25° C, the nitrate uptake rate per unit root increased by 130, 10, 30 and 5%, respectively. A major change in the activation energy for nitrate uptake was observed at a transition temperature located between 5°and 10°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号