首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

2.
Ligands for certain G(i)-protein-coupled receptors (GiPCRs) potently inhibit the production of IL-12 by human monocytes. We addressed the intracellular signaling mechanisms by which this occurs using primary human cells. Stimulation with the GiPCR ligands C5a and 1-deoxy-1-[6-[(3-iodophenyl)methyl]amino]-9H-purine-9-y1]-N-methyl-beta-D-ribofuranuronamide (IB-MECA) blocked the production of IL-12 p70 by human monocytes stimulated with LPS and IFN-gamma. In addition, C5a reduced the expression of mRNA for IL-12 p35, p40, IL-23 p19, and IL-27 p28. This effect was due neither to a down-regulation of TLR4 or IFN-gamma receptor on the cell surface nor to interference with IFN-gamma signaling, because IFN-gamma-induced up-regulation of HLA-DR and CD40 were unaffected. C5a or IB-MECA activated the PI3K/Akt signaling pathway and induced the phosphorylation of the MAPK p38, ERK, and JNK. Inhibition of the PI3K/Akt signaling pathway with wortmannin or an inhibitor of Akt activity, and inhibition of JNK but not ERK prevented IL-12 and IL-23 suppression by C5a. These data extend observations on IL-12 suppression by C5a to IL-23 and IL-27, and are the first to demonstrate the intracellular signaling events leading to IL-12 and IL-23 inhibition after GiPCR activation.  相似文献   

3.
We previously demonstrated that Mycobacterium tuberculosis (M. tbc)-induced interleukin (IL)-12 expression is negatively regulated by the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) 1/2 pathways in human monocyte-derived macrophages (MDMs). To extend these studies, we examined the nature of the involvement of toll-like receptors (TLRs) and intracellular signalling pathways downstream from PI3K in M. tbc-induced IL-23 expression in human MDMs. M. tbc-induced Akt activation and IL-23 expression were essentially dependent on TLR2. Blockade of the mammalian targets of rapamycin (mTOR)/70 kDa ribosomal S6 kinase 1 (S6K1) pathway by the specific inhibitor rapamycin greatly enhanced M. tbc-induced IL-12/IL-23 p40 (p40) and IL-23 p19 (p19) mRNA and IL-23 protein expression. In sharp contrast, p38 mitogen-activated protein kinase (MAPK) inhibition abrogated the p40 and p19 mRNA and IL-23 protein expression induced by M. tbc. Furthermore, the inhibition of PI3K-Akt, but not ERK 1/2 pathway, attenuated M. tbc-induced S6K1 phosphorylation, whereas PI3K inhibition enhanced p38 phosphorylation and apoptosis signal-regulating kinase 1 activity during exposure to M. tbc. Although the negative or positive regulation of IL-23 was not reversed by neutralization of IL-10, it was significantly modulated by blocking TLR2. Collectively, these findings provide new insight into the homeostatic mechanism controlling type 1 immune responses during mycobacterial infection involving the intracellular network of PI3K, S6K1, ERK 1/2 and p38 MAPK pathways in a TLR2-dependent manner.  相似文献   

4.
5.
Human neutrophil peptides (HNP) kill microorganisms but also modulate immune responses through upregulation of the chemokine IL-8 by activation of the nucleotide P2Y(6) receptor. However, the intracellular signaling mechanisms remain yet to be determined. Human lung epithelial cells (A549) and monocytes (U937) were stimulated with HNP in the absence and presence of the specific kinase inhibitors for Src, extracellular signal-regulated kinase-1 and -2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinases (JNK), and Akt. HNP induced a rapid phosphorylation of the kinases in both cell types associated with a dose-dependent, selective production of IL-8 among 10 cytokines assayed. The HNP-induced IL-8 production was blocked by the Src tyrosine kinase inhibitor PP2, MEK1/2 inhibitor U0126, and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the JNK inhibitor SP600125 in both cell types. Treatment with the p38 inhibitor SB203580 attenuated the HNP-induced IL-8 production only in monocytes. Blockade of Src kinase blunted HNP-induced phosphorylation of the ERK1/2 and Akt but not p38 in monocytes. In contrast, Src inhibition had no effect on phosphorylation of the other kinases in the lung epithelial cells. We conclude that the activation of ERK1/2 and PI3K/Akt pathways is required for HNP-induced IL-8 release which occurs in a Src-independent manner in lung epithelial cells, while is Src-dependent in monocytes.  相似文献   

6.
Park YD  Kim YS  Jung YM  Lee SI  Lee YM  Bang JB  Kim EC 《Cytokine》2012,60(1):284-293
Increased interleukin (IL)-17 and IL-23 levels exist in the gingival tissue of periodontitis patients, but the precise molecular mechanisms that regulate IL-17 and IL-23 production remain unknown. The aim of this study was to explore the role of SIRT1 signaling on Porphyromonas gingivalis lipopolysaccharide (LPS)-induced IL-17 and IL-23 production in human periodontal ligament cells (hPDLCs). IL-17 and IL-23 production was significantly increased in LPS-treated cells. LPS treatment also led to the upregulation of SIRT1 mRNA and protein expression. LPS-induced IL-17 and IL-23 upregulation was attenuated by pretreatment with inhibitors of phosphoinositide 3-kinase (PI3K), p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), and NF-κB, as well as neutralizing antibodies against Toll-like receptors (TLRs) 2 and 4. Sirtinol treatment (a known SIRT1 inhibitor) or SIRT1 knockdown by small interfering RNA blocked LPS-stimulated IL-17 and IL-23 expression. Further investigation showed that LPS decreased osteoblast markers (i.e., ALP, OPN, and BSP) and concomitantly increased osteoclast markers (i.e., RANKL and M-CSF). This response was attenuated by inhibitors of the PI3K, p38, ERK, JNK, NF-κB, and SIRT1 pathways. These findings, for the first time, suggest that human periodontopathogen P. gingivalis LPS is implicated in periodontal disease bone destruction and may mediate IL-17 and IL-23 release from hPDLCs. This process is dependent, at least in part, on SIRT1-Akt/PI3K-MAPK-NF-κB signaling.  相似文献   

7.
8.
Mature dendritic cells (DCs) are central to the development of optimal T cell immune responses. CD40 ligand (CD40L, CD154) is one of the most potent maturation stimuli for immature DCs. We studied the role of three signaling pathways, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and phosphoinositide-3-OH kinase (PI3K), in CD40L-induced monocyte-derived DC activation, survival, and expansion of virus-specific CD8(+) T cell responses. p38 MAPK pathway was critical for CD40L-mediated up-regulation of CD83, a marker of DC maturation. CD40L-induced monocyte-derived DC IL-12 production was mediated by both the p38 MAPK and PI3K pathways. CD40L-mediated DC survival was mostly mediated by the PI3K pathway, with smaller contributions by p38 MAPK and ERK pathways. Finally, the p38 MAPK pathway was most important in mediating CD40L-stimulated DCs to induce strong allogeneic responses as well as expanding virus-specific memory CD8(+) T cell responses. Thus, although the p38 MAPK, PI3K, and ERK pathways independently affect various parameters of DC maturation induced by CD40L, the p38 MAPK pathway within CD40L-conditioned DCs is the most important pathway to maximally elicit T cell immune responses. This pathway should be exploited in vivo to either completely suppress or enhance CD8(+) T cell immune responses.  相似文献   

9.
This study tested the hypothesis that expression of the novel adhesion molecule periostin (PN) and osteopontin (OPN) is increased in lung and in isolated pulmonary arterial smooth muscle cells (PASMCs) in response to the stress of hypoxia and explored the signaling pathways involved. Adult male rats were exposed to 10% O2 for 2 wk, and growth-arrested rat PASMCs were incubated under 1% O2 for 24 h. Hypoxia increased PN and OPN mRNA expression in rat lung. In PASMCs, hypoxia increased PN but not OPN expression. The hypoxia-responsive growth factors fibroblast growth factor-1 (FGF-1) and angiotensin II (ANG II) caused dose- and time-dependent increases in PN and OPN expression in PASMCs. FGF-1-induced PN expression was blocked by the FGF-1 receptor antagonist PD-166866 and by inhibitors of phosphatidylinositol 3-kinase (PI3K) (LY-294002, wortmannin), p70S6K (rapamycin), MEK1/2 (U-0126, PD-98059), and p38MAPK (SB-203580) but not of JNK (SP-600125). ANG II-induced PN expression was blocked by the AT(1)-receptor antagonist losartan and by inhibitors of PI3K and MEK1/2. In contrast, FGF-1-induced OPN expression was blocked by inhibitors of JNK or MEK1/2 but not of PI3K, p70S6K, or p38MAPK. Activation of p70S6K and p38MAPK by anisomycin robustly stimulated PN but not OPN expression. This study is the first to demonstrate that growth factor-induced expression of PN in PASMCs is mediated through PI3K/p70S6K, Ras/MEK1/2, and Ras/p38MAPK signaling pathways, whereas the expression of OPN is mediated through Ras/MEK1/2 and Ras/JNK signaling pathways. These differences in signaling suggest that PN and OPN may play different roles in pulmonary vascular remodeling under pathophysiological conditions.  相似文献   

10.
The dual-specificity mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) inactivates MAP kinases by dephosphorylation. Here we show that the proinflammatory cytokine interleukin (IL)-17A induces adult mouse primary cardiac fibroblast (CF) proliferation and migration via IL-17 receptor A//IL-17 receptor C-dependent MKP-1 suppression, and activation of p38 MAPK and ERK1/2. IL-17A mediated p38 MAPK and ERK1/2 activation is inhibited by MKP-1 overexpression, but prolonged by MKP-1 knockdown. IL-17A induced miR-101 expression via PI3K/Akt, and miR-101 inhibitor reversed MKP-1 down regulation. Importantly, MKP-1 knockdown, pharmacological inhibition of p38 MAPK and ERK1/2, or overexpression of dominant negative MEK1, each markedly attenuated IL-17A-mediated CF proliferation and migration. Similarly, IL-17F and IL-17A/F heterodimer that also signal via IL-17RA/IL-17RC, stimulated CF proliferation and migration. These results indicate that IL-17A stimulates CF proliferation and migration via Akt/miR-101/MKP-1-dependent p38 MAPK and ERK1/2 activation. These studies support a potential role for IL-17 in cardiac fibrosis and adverse myocardial remodeling.  相似文献   

11.
Stimulation of the APC by Porphyromonas gingivalis LPS has been shown to result in the production of certain pro- and anti-inflammatory cytokines. However, the signaling pathways that regulate these processes are currently unknown. In the present study, the role of the phosphatidylinositol 3 kinase (PI3K)-Akt pathway in regulating P. gingivalis LPS-induced production of IL-10, IL-12 p40, and IL-12 p70 by human monocytes was investigated. P. gingivalis LPS selectively activates the PI3K-Akt pathway via Toll-like receptor 2, and inhibition of this pathway results in an abrogation of extracellular signal-regulated kinase 1/2 phosphorylation, whereas the activation of p38 and c-Jun N-terminal kinase 1/2 kinases were unaffected. Analysis of cytokine production following stimulation of monocytes with P. gingivalis LPS revealed that inhibition of the PI3K pathway differentially regulated IL-10 and IL-12 synthesis. IL-10 production was suppressed, whereas IL-12 levels were enhanced. Inhibition of P. gingivalis LPS-mediated activation of the PI3K-Akt pathway resulted in a pronounced augmentation of NF-kappaB p65 that was independent of IkappaB-alpha degradation. Furthermore, the ability of the PI3K-Akt pathway to modulate IL-10 and IL-12 production appears to be mediated by the selective suppression of extracellular signal-regulated kinase 1/2 activity, as the MEK1 inhibitor PD98059 closely mimicked the effects of wortmannin and LY294002 to differentially regulate IL-10 and IL-12 production by P. gingivalis LPS-stimulated monocytes. These studies provide new insight into how engagement of the PI3K-Akt pathway by P. gingivalis LPS affects the induction of key immunoregulatory cytokines that control both qualitative and quantitative aspects of innate and adaptive immunity.  相似文献   

12.
IL-23 is a heterodimeric cytokine composed of a unique p19 subunit and of a p40 subunit that is also common to IL-12. We defined the distinct signaling mechanisms that regulate the LPS-mediated induction of IL-23 p19 and p40 in human macrophages and dendritic cells. We found that the overexpression of dominant-negative Rac1 (N17Rac1) enhanced LPS-induced IL-23 p19 expression but did not alter p40 expression or IL-12 p70 production in PMA-treated THP-1 macrophages and in human monocyte-derived dendritic cells. Although the inhibition of either p38 MAPK or JNK enhanced LPS-induced p19 expression, N17Rac1 did not influence either p38 MAPK or JNK activation. By contrast, N17Rac1 augmented both NF-kappaB gene expression and p65 trans activation stimulated by LPS without affecting the degradation of IkappaB-alpha or DNA binding to NF-kappaB. Furthermore, small interference RNA of NF-kappaB p65 attenuated cellular amounts of p65 and suppressed LPS-induced p19 expression but did not affect p40 expression. Our findings indicate that Rac1 negatively controls LPS-induced IL-23 p19 expression through an NF-kappaB p65 trans activation-dependent, IkappaB-independent pathway and that NF-kappaB p65 regulates LPS-induced IL-23 p19, but not p40, expression, which causes differences in the control of IL-23 p19 and p40 expression by Rac1.  相似文献   

13.
14.
Polymorphonuclear leukocytes (neutrophils) respond to lipopolysaccharide (LPS) through the up-regulation of several pro-inflammatory mediators. We have recently shown that LPS-stimulated neutrophils express monocyte chemoattractant protein 1 (MCP-1), an AP-1-dependent gene, suggesting that LPS activates the c-Jun N-terminal kinase (JNK) pathway in neutrophils. Previously, we have shown the activation of p38 MAPK, but not JNK, in suspended neutrophils stimulated with LPS but have recently shown activation of JNK by TNF-alpha in an adherent neutrophil system. We show here that exposure to LPS activates JNK in non-suspended neutrophils and that LPS-induced MCP-1 expression, but not tumor necrosis factor-alpha (TNF-alpha) or interleukin-8 (IL-8), is dependent on JNK activation. In addition, LPS stimulation of non-suspended neutrophils activates Syk and phosphatidylinositol 3-kinase (PI3K). Inhibition of Syk with piceatannol or PI3K with wortmannin inhibited LPS-induced JNK activation and decreased MCP-1 expression after exposure to LPS, suggesting that both Syk and PI3K reside in a signaling pathway leading to LPS-induced JNK activation in neutrophils. This Syk- and PI3K-dependent pathway leading to JNK activation after LPS exposure in non-suspended neutrophils is specific for JNK, because inhibition of neither Syk nor PI3K decreased p38 activation after LPS stimulation. Furthermore we show that PI3K inhibition decreased LPS-induced Syk activation suggesting that PI3K resides upstream of Syk in this pathway. Finally, we show that Syk associates with Toll-like receptor 4 (TLR4) upon LPS stimulation further implicating Syk in the LPS-induced signaling pathway in neutrophils. Overall our data suggests that LPS induces JNK activation only in non-suspended neutrophils, which proceeds through Syk- and PI3K-dependent pathways, and that JNK activation is important for LPS-induced MCP-1 expression but not for TNF-alpha or IL-8 expression.  相似文献   

15.
16.
IL-32, a newly described multifunctional cytokine, has been associated with a variety of inflammatory diseases, including rheumatoid arthritis, vasculitis, and Crohn's disease. In this study, we investigated the immunomodulatory effects of IL-32γ on bone marrow-derived dendritic cell (DC)-driven Th responses and analyzed the underlying signaling events. IL-32γ-treated DCs exhibited upregulated expression of cell-surface molecules and proinflammatory cytokines associated with DC maturation and activation. In particular, IL-32γ treatment significantly increased production of IL-12 and IL-6 in DCs, which are known as Th1- and Th17-polarizing cytokines, respectively. This increased production was inhibited by the addition of specific inhibitors of the activities of phospholipase C (PLC), JNK, and NF-κB. IL-32γ treatment increased the phosphorylation of JNK and the degradation of both IκBα and IκBβ in DCs, as well as NF-κB binding activity to the κB site. The PLC inhibitor suppressed NF-κB DNA binding activity and JNK phosphorylation increased by IL-32γ treatment, thereby indicating that IL-32γ induced IL-12 and IL-6 production in DCs via a PLC/JNK/NF-κB signaling pathway. Importantly, IL-32γ-stimulated DCs significantly induced both Th1 and Th17 responses when cocultured with CD4(+) T cells. The addition of a neutralizing anti-IL-12 mAb abolished the secretion of IFN-γ in a dose-dependent manner; additionally, the blockage of IL-1β and IL-6, but not of IL-21 or IL-23p19, profoundly inhibited IL-32γ-induced IL-17 production. These results demonstrated that IL-32γ could effectively induce the maturation and activation of immature DCs, leading to enhanced Th1 and Th17 responses as the result of increased IL-12 and IL-6 production in DCs.  相似文献   

17.
The effect of insulin on intestinal Na(+)/K(+) ATPase is till now undetermined, and it is still unclear whether insulin exerts any modulatory effect on glucose absorption by targeting the ATPase. This work attempted to address this question and to unravel the signaling pathway involved using Caco-2 cells as a model. After an overnight starvation, cells were treated with insulin in presence and absence of specific inhibitors of some known mediators. The activity of the pump was assayed by measuring the ouabain-inhibitable inorganic phosphate (P(i)) released, whereas changes in its abundance were determined by western blot analysis. Insulin decreased the activity and abundance of the ATPase in a crude membrane homogenate. This effect disappeared completely upon inhibition of either phosphotidylinositol-3 kinase (PI3K) or protein kinase C (PKC), but was partially abolished when p38MAPK or MEK/ERK were inhibited separately. Activation of PKC with phorbol-12-myristate-13-acetate (PMA) imitated the effect of insulin and was not affected by inhibition of PI3K. The data suggest that PI3K and PKC are along the same pathway that branches into two separate ones involving each either p38MAP kinase or MEK/ERK. This hypothesis was confirmed by the data obtained from the treatment of Caco-2 cells with PMA, when p38MAPK and MEK/ERK were inhibited simultaneously. Concomitant inhibition of p38MAPK and MEK/ERK abrogated fully the effect of insulin, indicating that no other pathways are present in addition to the ones proposed above.  相似文献   

18.
Interleukin (IL)-17 is a proinflammatory cytokine that is produced by activated memory CD4 T cells, which regulates pulmonary neutrophil emigration by the induction of CXC chemokines and cytokines. IL-17 constitutes a potential target for pharmacotherapy against exaggerated neutrophil recruitment in airway diseases. As a cytoprotective and anti-inflammatory gaseous molecule, carbon monoxide (CO) may also regulate IL-17-induced inflammatory responses in pulmonary cells. Herein, we examine the production of cytokine IL-6 induced by IL-17 and the effect of CO on IL-17-induced IL-6 production in human pulmonary epithelial cell A549. We first show that IL-17 can induce A549 cells to release IL-6 and that CO can markedly inhibit IL-17-induced IL-6 production. IL-17 activated the ERK1/2 MAPK pathway but did not affect p38 and JNK MAPK pathways. CO exposure selectively attenuated IL-17-induced ERK1/ERK2 MAPK activation without significantly affecting either JNK or p38 MAPK activation. Furthermore, in the presence of U0126 and PD-98059, selective inhibitors of MEK1/2, IL-17-induced IL-6 production was significantly attenuated. We conclude that CO inhibits IL-17-stimulated inflammatory response via the ERK1/2-dependent pathway.  相似文献   

19.
The Th1 vs. Th2 balance is critical for the maintenance of immune homeostasis. Therefore, the genes that are selectively-regulated by the Th1 and Th2 cytokines are likely to play an important role in the Th1 and Th2 immune responses. In order to search for and identify the novel target genes that are differentially regulated by the Th1/Th2 cytokines, the human PBMC mRNAs differentially expressed upon the stimulation with IL-4 or IL-12, were screened by employing the differential display polymerase chain reaction. Among a number of clones selected, DC21 was identified as a novel target gene that is regulated by IL-4 and IL-12. The DC21 gene expression was up-regulated either by IL-4 or IL-12, yet counterregulated by co-treatment with IL-4 and IL-12. DC21 is a dendritic cell protein with an unknown function. The sequence analysis and conserved-domain search revealed that it has two AU-rich motifs in the 3'UTR, which is a target site for the regulation of mRNA stability by cytokines, and that it belongs to the N-acetyltransferase family. The induction of DC21 by IL-12 peaked around 8-12 h, and lasted until 24 h. LY294002 and SB203580 significantly suppressed the IL-12-induced DC21 gene expression, which implies that PI3K and p38/JNK are involved in the IL-12 signal transduction pathway that leads to the DC21 expression. Furthermore, tissue blot data indicated that DC21 is highly expressed in tissues with specialized-resident macrophages, such as the lung, liver, kidney, and placenta. Together, these data suggest a possible role for DC21 in the differentiation and maturation of dendritic cells regulated by IL-4 and IL-12.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号