首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel TiO2/CdS nanocomposite was prepared and used to fabricate an electrochemiluminescence (ECL) biosensor for the detection of cancer cells for the first time. The nanocomposite exhibited a strong cathodic ECL signal. Folic acid for targeting cell membranes was bound to a TiO2/CdS/3-aminopropyltriethoxysilane film, and specific recognition of folic acid to targeting cells was achieved, leading to a significant decrease in ECL intensity. The decrease in ECL signal was logarithmically related to the cell concentration in the range of 150–9600 cells mL-1. The ECL biosensor could provide a sensitive, selective, and convenient approach for early and accurate detection of cancer cells.  相似文献   

2.
A novel and simple method for preparing cadmium sulfide nanoparticles (CdS NPs) functionalized colloidal carbon particles (CPs) has been successfully developed by in situ growing abundant CdS NPs on the surfaces of monodisperse carbon particles (CdS/CPs). The obtained CdS/CPs conjugates as signal amplification labels were further used for the ultrasensitive determination of thrombin. The CdS/CPs conjugates were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-visible absorption spectrum (UV). The protein electrical detection involves a dual binding event, based on thrombin linked to the CdS/CPs tags and glass surface by the specific aptamer-protein affinity interactions and a succedent electrochemical stripping transduction. Owing to the high-content CdS NPs on carbon particles, this assay allowed a desirable detection limit of 6.0 × 10(-17)M, which was 1000 times lower than that of only using CdS NPs as labels in the control experiments. This protocol exhibited excellent selectivity against these common proteins such as bovine plasma albumin, lysozyme and hemoglobin. The signal amplification approach proposed here provides a facile, cost-effective method for the ultrasensitive determination of thrombin in the practical samples.  相似文献   

3.
A novel electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of α-1-fetoprotein (AFP) was designed based on the in situ bi-enzymatic reaction to generate coreactant of peroxydisulfate for signal amplification. In this work, AuNPs were electrodeposited on the glassy carbon electrode (GCE) surface, which promoted the electron transfer. Then, L-cysteine and another layer of AuNPs were, respectively assembled onto the modified electrode surface, which formed the multilayer films for amplifying the ECL signal of peroxydisulfate and immobilizing antibody. At last, glucose oxidase (GOD) and horseradish peroxidase (HRP) were employed to block the nonspecific binding sites. When proper amounts of glucose were added in the detection solution, GOD catalyzed the oxidation of glucose to generate H(2)O(2), which could be further catalyzed by HRP to generate O(2) for the signal amplification. The linear range for AFP detection was 0.001-100 ng mL(-1), with a low detection limit of 3.3 × 10(-4) ng mL(-1). The novel strategy has the advantages of simplicity, sensitivity, good selectivity and reproducibility which might hold a new promise for highly sensitive bioassays applied in clinical detection.  相似文献   

4.
Xue Y  Bao L  Xiao X  Ding L  Lei J  Ju H 《Analytical biochemistry》2011,(1):18154-97
A kind of concanavalin A functionalized multiwalled carbon nanotube (ConA-MWCNT) was constructed by noncovalent assembly of ConA on carboxylated MWCNT with poly(diallyldimethylammonium) as a linker. The novel nanomaterial was characterized with scanning electron microscopy and atomic force microscopy. It incorporated both the specific recognition ability of lectin for cell-surface mannosyl groups and the unique electronic and mechanical properties of MWCNT. An electrochemical label-free method for cytosensing was proposed by constructing a ConA-MWCNT interface on a glassy carbon electrode, which showed a linear response to K562 cells ranging from 1 × 104 to 1 × 107 cells mL−1. The ConA-MWCNT interface could be further used for monitoring of dynamic variation of glycan expression on K562 cells in response to drugs. A facile and high-throughput optical method for the analysis of dynamic glycan expression on living cells was also developed by constructing an array of ConA-MWCNT spots on a glass slide. This method showed acceptable rapidity and low cost. The noncovalent functionalization of MWCNTs with lectins could be potentially applied in cell biological studies based on cell-surface glycan expression.  相似文献   

5.
Two carbohydrate-binding probes (the lectin concanavalin A and the anti-carbohydrate monoclonal antibody FMG-1) have been utilized in conjunction with fluorescence-activated cell sorting to select cell lines of Chlamydomonas reinhardtii that contain defects in cell surface-exposed glycoproteins. Two very different selection strategies (sorting cells with the lowest binding for the FMG-1 monoclonal antibody or the highest binding of concanavalin A) yield a class of mutant cells that exhibit a total lack of binding of the monoclonal antibody to cell wall and plasma membrane glycoproteins along with an increased affinity for concanavalin A. Detailed characterization of one such mutant cell line, designated L-23, is provided. The subtle glycosylation defect exhibited by this cell line does not alter the ability of the affected glycoproteins to be targeted to the flagellar membrane and does not affect the expression of flagellar surface motility, a phenomenon that appears to involve the major concanavalin A-binding glycoprotein of the flagellar membrane. This approach has general applicability for dissecting the role of carbohydrate epitopes in the targeting and function of any cell surface glycoprotein for which suitable carbohydrate probes are available.  相似文献   

6.
An electrochemical cytosensor was designed based on the specific recognition of mannosyl on a cell surface to concanavalin A (ConA) and the signal amplification of gold nanoparticles (NPs). By sandwiching a cancer cell between a gold electrode modified with ConA and the gold NPs with ConA and 6-ferrocenylhexanethiol (Fc), the electrochemical cytosensor was established. The cell number and the amount of cell surface mannose moieties were quantified by cyclic voltammetry (CV) analysis of the Fc loaded on the surface of the gold NPs. Since a single gold NP could be loaded with hundreds of Fc, a significant amplification for the detection of target cell was obtained. By using K562 leukemic cells (K562 cells) as a model, the electrochemical response was proportional to the cell concentration in the range from 1.0 × 102 to 1.0 × 107 cells mL−1, showing very high sensitivity. The signal amplification could be further used to evaluate the cell surface mannose moieties, and the amount of mannose moieties on a single living K562 cell was detected to correspond to 4.7 × 109 molecules of free mannose. This strategy presents a promising platform in a highly sensitive cytosensor and convenient estimation of cell surface carbohydrate.  相似文献   

7.
A potential producer clone was identified among recombinant, human vascular endothelial growth factor A (hVEGFA)-producing Chinese Hamster Ovary (CHO) K1 cells, using a recently established screening method. In batch spinner cultivations, the cells showed a maximum growth rate of 0.045 h(-1), a final total cell density of 5.3×10(6) mL(-1) (living cell density: 3.4×10(6) mL(-1)), and a final hVEGFA concentration of 207 μg L(-1). Living cell density and productivity in the spinner cultivations could be increased by glutamine feeding. Transfer of the process to the bioreactor (batch mode, control of pH, T, and O2) resulted in a reduction of the growth rate by roughly 50%, while overall living cell density and productivity increased, largely due to an extension of the production phase. When the bioreactor was run in the fed-batch mode, growth rates were further reduced, while productivity and living cell densities reached a maximum (hVEGFA: 358 μg L(-1), cells: 5.2×10(6) mL(-1)). In addition, the death rate of the hVEGFA-producing cells was considerably reduced compared with the parent cell line, most likely due to product-host-interaction. This hypothesis was corroborated when a second recombinant CHO cell line (antibody producer) was transfected with the hVEGFA gene and afterward consistently showed higher viable cell densities together with a significantly improved antibody titer.  相似文献   

8.
An improved imprinted film-based electrochemical sensor for urea recognition was developed using CdS quantum dots (QDs) doped chitosan as the functional matrix. The microstructure and composition of the imprinted films depicted by scanning electron microscopy (SEM), attenuated total reflection infrared (ATR-IR), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS) indicated the fabricated feasibility of the nanoparticle doped films via in situ electrodeposition. Differential pulse voltammetric responses under the optimal fabrication conditions showed that the sensitivity of CdS QDs-MIP (molecularly imprinted polymer) electrochemical sensor was enhanced from the favorable electron transfer and magnified surface area of CdS QDs with a short adsorption equilibrium time (7 min), wide linear range (5.0 × 10(-12) to 4.0 × 10(-10) M and 5.0 × 10(-10) to 7.0 × 10(-8) M), and low detection limit (1.0 × 10(-12) M). Meanwhile, the fabricated sensor showed excellent specific recognition to template molecule among the structural similarities and coexistence substances. Furthermore, the proposed sensor was applied to determine the urea in human blood serum samples based on its good reproducibility and stability, and the acceptable recovery implied its feasibility for practical application.  相似文献   

9.
A novel label-free electrogenerated chemiluminescence (ECL) aptasensor for the determination of lysozyme is designed employing lysozyme binding aptamer (LBA) as molecular recognition element for lysozyme as a model analyte and Ru(bpy)(3)(2+) as an ECL signal compound. This ECL aptasensor was fabricated by self-assembling the thiolated LBA onto the surface of a gold electrode. Using this aptasensor, sensitive quantitative detection of lysozyme is realized on basis of the competition of lysozyme with Ru(bpy)(3)(2+) cation for the binding sites of LBA. In the presence of lysozyme, the aptamer sequence prefers to form the LBA-lysozyme complex, the less negative environment allows Ru(bpy)(3)(2+) cations to be less bound electrostatically to the LBAs on the electrode surface, in conjunction with the generation of a decreased ECL signal. The integrated ECL intensity versus the concentration of lysozyme was linear in the range from 6.4×10(-10) M to 6.4×10(-7) M. The detection limit was 1.2×10(-10) M. This work demonstrates that using the competition of target protein with an ECL signal compound Ru(bpy)(3)(2+) for binding sites of special aptamer confined on the electrode is promising approach for the design of label-free ECL aptasensors for the determination of proteins.  相似文献   

10.
A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays.  相似文献   

11.
An immunosensor based on the electrochemiluminescence (ECL) of peroxydisulfate was firstly proposed by coupling the cooperation of two enzymes to in situ generate coreactant with palladium nanoparticles (PdNPs) as catalyst for the ECL reaction. PdNPs were previously synthesized, which successfully attached to functional carbon nanotubes (FCNTs), to bind the secondary antibody and bienzyme (horseradish peroxidase and glucose oxidase). Then the prepared bioconjugates were introduced to the electrode via sandwich immunoreactions. Accordingly, a dramatically amplified ECL signal was obtained for that GOD catalyzed glucose to produce H(2)O(2) which was subsequently reduced by HRP to in situ generate O(2), then PdNPs as catalyst for the ECL reaction of peroxydisulfate/O(2). The present immunosensor was used to detect α-1-fetoprotein (AFP) and showed a wide linear range of 1×10(-5)-100ngmL(-1), with a low detection limit of 3.3fgmL(-1)(S/N=3). This new signal amplification strategy for preparation of the ECL immunosensor could be easily realized and has a potential application in ultrasensitive bioassays.  相似文献   

12.
It has been previously observed that rabbit erythrocyte cell surface galactosyltransferase appears to play a role in concanavalin A agglutination of these erythrocytes (Podolsky et al., 1974). Further, a correlation between the occurrence or level of cell surface galactosyltransferase and concanavalin A agglutinability of other cell types has also been observed. The mechanism by which rabbit erythrocyte galactosyltransferase participates in concanavalin A agglutination has now been further defined. The enzyme was solubilized and purified. Characterization of the enzyme properties has shown them to be similar to those reported for other purified galactosyltransferases. Amino acid and carbohydrate analysis showed a high asparagine content and the presence of D-mannose. Specific alpha-mannosidase treatment of the enzyme showed that some of these D-mannose residues were terminal sugars. The purified enzyme also conferred concanavalin A agglutinability to non-agglutinable human erythrocytes. However, the ability to confer concanavalin A agglutinability was unrelated to the enzyme activity per se (as measured with fetuin acceptor) but appeared to be entirely dependent on the presence of terminal alpha-linked D-mannosyl residues in the enzyme structure. These findings suggest that the presence of terminal alpha-mannosidyl residues on cell surface glycoproteins such as galactosyltransferase may be the determining factor in agglutination of cells by concanavalin A.  相似文献   

13.
In this paper, a novel and ultrasensitive electrochemiluminescent sensor employing a solvothermal‐synthesized CdS nanorod‐modified pencil graphite electrode (CdS/PGE) for the determination of chlorogenic acid (CA) is fabricated. In the first step, the PGE surface is modified using CdS nanorods. In the next step, the developed electrode is used to detect CA using a electrochemiluminescent (ECL) technique, in which potassium persulfate (K2S2O8) served as a co‐reactant. The possible ECL mechanism is investigated, and the influences of pH and cyclic voltammetric scanning rate on the signal response are studied. The ECL intensity decreases quantitatively in relation to the concentration of the target molecule. Under optimized conditions, the linear correlation between the quenched ECL intensity and the logarithm of CA concentration is observed in the range from 2 × 10?9 to 8 × 10?7 mol L?1 with a limit of detection of 1 × 10?9 mol L?1. This proposed method is applied to the analysis of CA in honeysuckle flower, giving recoveries of 99‐107%. The experimental results demonstrate that this ECL sensor shows good stability and reproducibility.  相似文献   

14.
We describe a non-labeled electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) for the detection of human prealbumin (PAB, antigen). The immunosensor was fabricated by layer by layer coupled with nanoparticle-amplification techniques. After two gold nanoparticle layers were self-assembled onto the gold electrode surface through cysteamine, anti-PAB (antibody) were conjugated with -COOH groups of both the CdSe QDs and cysteine, which were linked to the gold nanoparticle-modified electrode. The principle of ECL detection was that the immunocomplex inhibited the ECL reaction between CdSe QDs and K(2)S(2)O(8), which resulted in the decrease of ECL intensity. On the one hand, the immunocomplex increased the steric hindrance. On the other hand, the immunocomplex maybe inhibit the transfer of K(2)S(2)O(8) to the surface of the CdSe QD-electrode. The PAB concentration was determined in the range of 5.0 x 10(-10) to 1.0 x 10(-6) g mL(-1), and the detection limit was 1.0 x 10(-11) g mL(-1). The developed CdSe QD-based ECL immunosensor provides a rapid, simple, and sensitive immunoassay protocol for protein detection, which could be applied in more bioanalytical systems.  相似文献   

15.
Chattonella marina and Heterosigma akashiwo, known as red tide phytoplankton, are naturally wall-less and have quite fragile cell structures. In this study, we found that an equilibrium dialysis technique allowed the study of lectin binding to these flagellates. The results suggested that concanavalin A (Con A) binds to these flagellate cells through the specific carbohydrate moieties on the cell surface. Interestingly, the binding of an excess of Con A on the cell surface caused morphological changes concomitant with discharge of glycocalyx, a polysaccharide-containing common structure on the external cell surface of these flagellates. Fluorescent microscopic observation using FITC-labeled Con A (F-Con A) confirmed that F-Con A molecules are localized on the discharged glycocalyx.  相似文献   

16.
DNA electrochemical biosensor based on thionine-graphene nanocomposite   总被引:1,自引:0,他引:1  
A novel protocol for development of DNA electrochemical biosensor based on thionine-graphene nanocomposite modified gold electrode was presented. The thionine-graphene nanocomposite layer with highly conductive property was characterized by scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. An amino-substituted oligonucleotide probe was covalently grafted onto the surface of the thionine-graphene nanocomposite by the cross-linker glutaraldehyde. The hybridization reaction on the modified electrode was monitored by differential pulse voltammetry analysis using an electroactive intercalator daunomycin as the indicator. Under optimum conditions, the proposed biosensor exhibited high sensitivity and low detection limit for detecting complementary oligonucleotide. The complementary oligonucleotide could be quantified in a wide range of 1.0 × 10(-12) to 1.0 × 10(-7)M with a good linearity (R(2)=0.9976) and a low detection limit of 1.26 × 10(-13)M (S/N=3). In addition, the biosensor was highly selective to discriminate one-base or two-base mismatched sequences.  相似文献   

17.
A major sialoglycoprotein (gp110) was isolated from NP-40 extracts of the human melanoma cell line SK-MEL-37 by concanavalin A-Sepharose and wheat germ agglutinin-Sepharose affinity chromatography, and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A rabbit antiserum was prepared to this concanavalin A- and wheat germ agglutinin-binding glycoprotein and used to study the biochemical properties and distribution of gp110 in human cells. gp110 is highly acidic (pI ~ 3.8–4.0) and located on the cell surface in melanoma cells. It contains sialylated, N-linked complex chains as well as sialylated, O-linked carbohydrate chains. gp110 was detected as a major glycoprotein on all human cell lines tested (except erythrocytes), although its apparent molecular weight varied from cell line to cell line. The pI of gp110 from normal and malignant human kidney epithelial cells was identical, indicating that gp110's from two cell types do not substantially differ in their sialylated carbohydrate moieties.  相似文献   

18.
The carbohydrate portion of the G glycoprotein of vesicular stomatitis virus (VSV) grown in CHO cells (CHO/VSV) has been fractionated on BioGelP6, concanavalin A-Sepharose, and pea lectin-agarose. The results suggest that, in addition to sialic acid and fucose heterogeneity, the asparagine-linked complex carbohydrate moieties of CHO/VSV also display branching heterogeneity. Although the majority of the glycopeptides bind to concanavalin A-Sepharose in a manner typical of certain biantennary carbohydrate structures, a significant proportion do not bind to the lectin. The latter behavior is typical of tri- or tetraantennary (branched) carbohydrate structures. The CHO/VSV glycopeptides which do not bind to concanavalin A-Sepharose separate into bound and unbound fractions on pea lectin-agarose suggesting that they include at least two different types of (branched) carbohydrate structures. Glycopeptides from the G glycoprotein of VSV grown in two, independently derived CHO glycosylation mutants which belong to complementation group 4 (Lec4 mutants) were examined in the same manner. In contrast to glycopeptides from CHO/VSV, glycopeptides from Lec4/VSV which passed through concanavalin A-Sepharose did not contain a component which subsequently bound to pea lectin-agarose. A glycopeptide fraction with these lectin-binding properties was also missing from cell surface glycopeptides derived from Lec4 cells. The combined results are consistent with the hypothesis that Lec4 CHO glycosylation mutants lack a glycosyltransferase activity responsible for the addition of a (branch) N-acetylglucosamine residue linked β1,6 to mannose.  相似文献   

19.
20.
Du D  Ju H  Zhang X  Chen J  Cai J  Chen H 《Biochemistry》2005,44(34):11539-11545
A strategy to detect P-glycoprotein (P-gp) on cell membrane and quantify the cell number using electrochemical immunoassay was developed by effective surface immunoreactions and immobilization of cells on a highly hydrophilic interface, which was constructed by adsorption of colloidal gold nanoparticles on a methoxysilyl-terminated (Mos) butyrylchitosan modified glassy carbon electrode (Au-CS/GCE). Atomic force microscopy studies proved that the nanoparticles adsorbed on Mos-butyrylchitosan were efficient in preventing the cell leakage and retaining the activity of immobilized living K562/ADM leukemic cells. The incubation with P-gp monoclonal antibody and then the secondary alkaline phosphatase (AP) conjugated antibody introduced AP onto the K562/ADM cell immobilized on Au-CS/GCE. The bound AP led to an amperometric response of 1-naphthyl phosphate. Under optimal conditions the response was proportional to the logarithm of cell concentration in the range from 5.0 x 10(4) to 1.0 x 10(7) cells mL(-)(1) with a detection limit of 1.0 x 10(4) cells mL(-)(1). The results were comparable to flow cytometric analysis of P-gp expression. This proposed method was practical, convenient, and significant in the clinic and cytobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号