首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bacterial chemotaxis, the chemoreceptors [methyl-accepting chemotaxis proteins (MCPs)] transduce chemotactic signals through the two-component histidine kinase CheA. At low but not high attractant concentrations, chemotactic signals must be amplified. The MCPs are organized into a polar lattice, and this organization has been proposed to be critical for signal amplification. Although evidence in support of this model has emerged, an understanding of how signals are amplified and modulated is lacking. We probed the role of MCP localization under conditions wherein signal amplification must be inhibited. We tested whether a large increase in attractant concentration (a change that should alter receptor occupancy from c. 0% to > 95%) would elicit changes in the chemoreceptor localization. We treated Escherichia coli or Bacillus subtilis with a high level of attractant, exposed cells to the cross-linking agent paraformaldehyde and visualized chemoreceptor location with an anti-MCP antibody. A marked increase in the percentage of cells displaying a diffuse staining pattern was obtained. In contrast, no increase in diffuse MCP staining is observed when cells are treated with a repellent or a low concentration of attractant. For B. subtilis mutants that do not undergo chemotaxis, the addition of a high concentration of attractant has no effect on MCP localization. Our data suggest that interactions between chemoreceptors are decreased when signal amplification is unnecessary.  相似文献   

2.
Bacterial chemoreceptors primarily locate in clusters at the cell pole, where they form large sensory complexes which recruit cytoplasmic components of the signaling pathway. The genome of the soil bacterium Sinorhizobium meliloti encodes seven transmembrane and two soluble chemoreceptors. We have investigated the localization of all nine chemoreceptors in vivo using genome-encoded fusions to a variant of the enhanced green fluorescent protein and to monomeric red fluorescent protein. Six of the transmembrane (McpT to McpX and McpZ) and both soluble (McpY and IcpA) receptors localize to the cell pole. Only McpS, encoded from the symbiotic plasmid pSymA, is evenly distributed in the cell. While the synthesis of all polar localized receptors is confined to exponential growth correlating with the motility phase of cells, McpS is only weakly expressed throughout cell culture growth. Therefore, motile S. meliloti cells form one major chemotaxis cluster that harbors all chemoreceptors except for McpS. Colocalization and deletion analysis demonstrated that formation of polar foci by the majority of receptors is dependent on other chemoreceptors and that receptor clusters are stabilized by the presence of the chemotaxis proteins CheA and CheW. The transmembrane McpV and the soluble IcpA localize to the pole independently of CheA and CheW. However, in mutant strains McpV formed delocalized polar caps that spread throughout the cell membrane while IcpA exhibited increased bipolarity. Immunoblotting of fractionated cells revealed that IcpA, which lacks any hydrophobic domains, nevertheless is associated to the cell membrane.The chemosensory machinery of Escherichia coli and other bacteria is arranged in large protein clusters (22, 28, 43, 49). One individual signaling unit is formed by a ternary assembly of chemoreceptor dimers, the histidine kinase CheA, and the so-called adaptor protein CheW. E. coli cells contain 20,000 receptor molecules (22). Recent studies suggest that the stoichiometry of such chemosensory complexes is flexible (17, 32). Allosteric interactions among receptors in a chemosensory cluster facilitate amplification and integration of chemotactic stimuli (20, 21, 41, 42).In contrast to E. coli, which has a single set of che genes and only five receptors, some species from the alpha subgroup of the proteobacteria, such as Pseudomonas aeruginosa, Rhodobacter sphaeroides, and Sinorhizobium meliloti, encode multiple chemotaxis-like systems, reflecting their complex lifestyle. The opportunistic pathogen P. aeruginosa possesses four chemotaxis systems that together have 26 known receptor genes (47), while the nonsulfur bacterium R. sphaeroides has three separate che operons with 13 known receptor-like genes (27).The symbiotic soil bacterium S. meliloti possesses eight methyl-accepting chemotaxis proteins (MCPs), McpS to McpZ, and one transducer-like-protein, IcpA, which lacks the conserved Glu or Gln residues that serve as methyl-accepting sites (29). Seven of the MCP proteins are localized in the cytoplasmic membrane via two membrane-spanning regions, whereas McpY and IcpA lack such hydrophobic regions. The S. meliloti mcpS gene is the third gene of the che2 operon located on the symbiotic plasmid pSymA (4). The icpA gene is the first gene of the chromosomal che operon comprising a total of 10 genes (9). This operon is part of the flagellar gene cluster with 56 chemotaxis, motor, and flagellar genes residing on one contiguous 51.4-kb chromosomal region (7, 46). For bacteria with numerous chemoreceptor genes, it is not unusual to find most of them located outside chemotaxis operons. This is the case with six monocistronic S. meliloti mcp genes which are scattered throughout the genome. The remaining mcpW gene is cotranscribed with a putative cheW gene. In this study, we examined the localization of the nine receptor gene products in the S. meliloti cell by fluorescence microscopy in wild-type and various deletion strains. The cellular localization of the two soluble receptors, McpY and IcpA, was also analyzed in vitro using an immunoblot assay on fractionated cell components. Furthermore, timing of chemoreceptor gene expression during exponential and stationary phase was determined.  相似文献   

3.
Rhodobacter sphaeroides has multiple homologues of most of the Escherichia coli chemotaxis genes, organized in two major operons and other, unlinked, loci. These include cheA1 and cheW1 (che Op1) and cheA2, cheW2 and cheW3 (che Op2). We have deleted each of these cheA and cheW homologues in-frame and examined the chemosensory behaviour of these strains on swarm plates and in tethered cell assays. In addition, we have examined the effect of these deletions on the polar localization of the chemoreceptor McpG. In E. coli, deletion of either cheA or cheW results in a non-chemotactic phenotype, and these strains also show no receptor clustering. Here, we demonstrate that CheW2 and CheA2 are required for the normal localization of McpG and for normal chemotactic responses under both aerobic and photoheterotrophic conditions. Under aerobic conditions, deletion of cheW3 has no significant effect on McpG localization and only has an effect on chemotaxis to shallow gradients in swarm plates. Under photoheterotrophic conditions, however, CheW3 is required for McpG localization and also for chemotaxis both on swarm plates and in the tethered cell assay. These phenotypes are not a direct result of delocalization of McpG, as this chemoreceptor does not mediate chemotaxis to any of the compounds tested and can therefore be considered a marker for general methyl-accepting chemotaxis protein (MCP) clustering. Thus, there is a correlation between the normal localization of McpG (and presumably other chemoreceptors) and chemotaxis. We propose a model in which the multiple different MCPs in R. sphaeroides are contained within a polar chemoreceptor cluster. Deletion of cheW2 and cheA2 under both aerobic and photoheterotrophic conditions, and cheW3 under photoheterotrophic conditions, disrupts the cluster and hence reduces chemotaxis to any compound sensed by these MCPs.  相似文献   

4.
Genes coding for a classical membrane spanning chemoreceptor (mcpG) and a response regulator (cheY4) were identified in a region of Rhodobacter sphaeroides DNA unlinked to either of the two previously identified chemosensory operons. Immunogold electron microscopy had shown that the expression of chemoreceptors in R. sphaeroides varies with growth conditions. Using GFP fused to the newly identified McpG, we examined the targeting of this single methyl-accepting chemotaxis protein (MCP) under different growth conditions. The gene encoding the C-terminal McpG-GFP fusion was introduced by homologous recombination into the chromosome, replacing the wild-type gene. The resultant protein localized to the poles of the cell under aerobic, photoheterotrophic and anaerobic dark conditions, demonstrating that this MCP is expressed under all three growth conditions. More protein was always found at one pole than the other. The polar fluorescence increased during the cell cycle, with protein becoming evident at the second pole around the time of septation. At division, each daughter cell had a label at one pole, but the intensity of fluorescence was higher in the daughter cell containing the original labelled pole. McpG localization was not altered in a che Operon 1 deletion strain, lacking CheW1 and CheA1, but a che Operon 2 deletion strain, lacking CheW2, CheW3 and CheA2, showed significantly reduced polar localization. This observation indicates that polar localization of McpG depends on Che proteins encoded by Operon 2, but not homologues encoded by Operon 1.  相似文献   

5.
6.
7.
We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (Tm) and unfolding enthalpy (ΔH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.  相似文献   

8.
Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR beta-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C-terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR beta-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only approximately 10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (alpha, beta, gamma, delta). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well-characterized pentapeptide-dependent methylation system.  相似文献   

9.
Micro‐organisms sense and chemotactically respond to aromatic compounds. Although the existence of chemoreceptors that bind to aromatic attractants and subsequently trigger chemotaxis have long been speculated, such a chemoreceptor has not been demonstrated. In this report, we demonstrated that the chemoreceptor MCP2901 from Comamonas testosteroni CNB‐1 binds to aromatic compounds and initiates downstream chemotactic signaling in addition to its ability to trigger chemotaxis via citrate binding. The function of gene MCP2901 was investigated by genetic deletion from CNB‐1 and genetic complementation of the methyl‐accepting chemotaxis protein (MCP)‐null mutant CNB‐1Δ20. Results showed that the expression of MCP2901 in the MCP‐null mutant restored chemotaxis toward nine tested aromatic compounds and nine carboxylic acids. Isothermal titration calorimetry (ITC) analyses demonstrated that the ligand‐binding domain of MCP2901 (MCP2901LBD) bound to citrate, and weakly to gentisate and 4‐hydroxybenzoate. Additionally, ITC assays indicated that MCP2901LBD bound strongly to 2,6‐dihydroxybenzoate and 2‐hydroxybenzoate, which are isomers of gentisate and 4‐hydroxybenzoate respectively that are not metabolized by CNB‐1. Agarose‐in‐plug and capillary assays showed that these two molecules serve as chemoattractants for CNB‐1. Through constructing membrane‐like MCP2901‐inserted Nanodiscs and phosphorelay activity assays, we demonstrated that 2,6‐dihydroxybenzoate and 2‐hydroxybenzoate altered kinase activity of CheA. This is the first evidence of an MCP binding to an aromatic molecule and triggering signal transduction for bacterial chemotaxis.  相似文献   

10.
Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non‐phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZHP, localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZHP localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZHP for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZHP determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZHP and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.  相似文献   

11.
In the chemotaxis of Escherichia coli, polar clustering of the chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW is thought to be involved in signal amplification and adaptation. However, the mechanism that leads to the polar localization of the receptor is still largely unknown. In this study, we examined the effect of receptor covalent modification on the polar localization of the aspartate chemoreceptor Tar fused to green fluorescent protein (GFP). Amidation (and presumably methylation) of Tar-GFP enhanced its own polar localization, although the effect was small. The slight but significant effect of amidation on receptor localization was reinforced by the fact that localization of a noncatalytic mutant version of GFP-CheR that targets to the C-terminal pentapeptide sequence of Tar was similarly facilitated by receptor amidation. Polar localization of the demethylated version of Tar-GFP was also enhanced by increasing levels of the serine chemoreceptor Tsr. The effect of covalent modification on receptor localization by itself may be too small to account for chemotactic adaptation, but receptor modification is suggested to contribute to the molecular assembly of the chemoreceptor/histidine kinase array at a cell pole, presumably by stabilizing the receptor dimer-to-dimer interaction.  相似文献   

12.
Spatiotemporal regulation of cell polarity plays a role in many fundamental processes in bacteria and often relies on ‘landmark’ proteins which recruit the corresponding clients to their designated position. Here, we explored the localization of two multi‐protein complexes, the polar flagellar motor and the chemotaxis array, in Shewanella putrefaciens CN‐32. We demonstrate that polar positioning of the flagellar system, but not of the chemotaxis system, depends on the GTPase FlhF. In contrast, the chemotaxis array is recruited by a transmembrane protein which we identified as the functional ortholog of Vibrio cholerae HubP. Mediated by its periplasmic N‐terminal LysM domain, SpHubP exhibits an FlhF‐independent localization pattern during cell cycle similar to its Vibrio counterpart and also has a role in proper chromosome segregation. In addition, while not affecting flagellar positioning, SpHubP is crucial for normal flagellar function and is involved in type IV pili‐mediated twitching motility. We hypothesize that a group of HubP/FimV homologs, characterized by a rather conserved N‐terminal periplasmic section required for polar targeting and a highly variable acidic cytoplasmic part, primarily mediating recruitment of client proteins, serves as polar markers in various bacterial species with respect to different cellular functions.  相似文献   

13.
Vibrio cholerae has three sets of chemotaxis‐related signaling proteins, of which only System II has been shown to be involved in chemotaxis. Here, we examined localization of green fluorescent protein (GFP)‐fused components of System I. The histidine kinase (CheA1) and the adaptor (CheW0) of System I localized to polar and lateral membrane regions with standing incubation (microaerobic conditions), but their localization was lost after shaking (aerobic conditions). A transmembrane receptor of System I also showed polar and lateral localization with standing incubation. By contrast, GFP‐fused components of System II localized constitutively to the flagellated pole. Nitrogen gas, sodium azide or carbonylcyanide m‐chlorophenylhydrazone induced localization of CheA1‐GFP even with shaking incubation, suggesting that the localization is controlled in response to changes in energy metabolism. Fluorescently labeled tetracysteine‐tagged CheA1 also showed azide‐induced localization, arguing against artifactual effects of GFP fusions. These results suggest that System I components are assembled into the supramolecular signaling complex in response to reduced cellular energy states, raising the possibility that the System I complex plays a role in sensing and signaling under microaerobic environments, such as in the host intestine.  相似文献   

14.
Several bacterial structures, processes and proteins are localized primarily to the poles of rod-shaped cells. To better understand this cellular organization, we devised a new method for identifying proteins that localize to the poles of Escherichia coli. Pole-derived membrane fragments were isolated by affinity capture of vesicles containing the chemotaxis protein, Tar; and for comparison, vesicles representing all parts of the cytoplasmic membrane were captured by expressing a Tar variant that was no longer pole-specific. A combination of one-dimensional SDS-PAGE and semi-quantitative mass spectrometry identified 31 proteins that were highly enriched in polar vesicles. Five were chemotaxis proteins known to be pole-specific and another, Aer, was an aerotaxis protein that had not yet been localized to the pole. The behaviour of these internal controls validated the overall approach. GFP-fused derivatives of four candidates (Aer, YqjD, TnaA and GroES) formed polar foci that were distinct from inclusion bodies. TnaA-GFP and GroES-GFP were functional, formed a single focus per cell, and competed for polar localization with the wild-type versions of these proteins. Polar localization of TnaA, GroES and YqjD was disrupted in cells lacking the MinCDE proteins, suggesting that this system may help localize proteins not involved in cell division.  相似文献   

15.
We have fused GFP to the C-terminus of McpA to study chemoreceptor polar localization in Caulobacter crescentus. The full-length McpA-GFP fusion is polarly localized and methylated. The methylation is dependent on the chemoreceptor methyltransferase (cheR) and chemoreceptor methylesterase (cheB) genes present in the mcpA operon. C-terminal and internal deletions of McpA were constructed and fused to the N-terminus of GFP to identify the domains required for polar localization. When the R1 methylation domain was deleted, the McpA-GFP fusion was still polarly localized, suggesting that this domain is dispensable for polar localization. However, when the highly conserved domain (HCD), which is involved in interacting with CheW, was deleted either by an internal deletion or C-terminal deletion, the resulting McpA-GFP fusions were completely delocalized. When the mcpA operon, which contains the cheW and cheA homologues, was deleted, the full-length McpA-GFP fusion was delocalized. Although additional chemotaxis genes are required for the polar localization of McpA-GFP, the presence of the single polar flagellum is not required. However, in filamentous cells, which are frequently found in C. crescentus fliF mutants, the McpA-GFP fusion was observed at mid-cell positions.  相似文献   

16.
The extracellular protease plasmin cleaves mouse MCP1 (monocyte chemoattractant protein 1) at lysine 104, releasing a 50-amino acid C-terminal domain. The cleavage event increases the chemotactic activity of MCP1 and, by doing so, promotes the progression of excitotoxic injury in the central nervous system in pathological settings. The mechanism through which the cleavage event enhances MCP1-mediated chemoattraction is unknown; to investigate it, we use wild-type and mutant forms of recombinant MCP1. Full-length MCP1 (FL-MCP1) is secreted by cells as a dimer or multimer. We show that a mutant truncated at the C terminus, K104Stop-MCP1, does not dimerize, revealing that the C terminus mediates the interaction. MCP1 interacts with the monocyte/microglia receptor CCR2. The interaction is critical to the function of MCP1 because CCR2−/− microglia do not undergo chemotaxis in response to MCP1 stimulation. We show that stimulation of microglia with FL-MCP1 or K104Stop-MCP1 triggers CCR2 internalization, whereas a mutant form unable to be cleaved at lysine 104 (K104A-MCP1) is relatively ineffective in this assay, suggesting that the C-terminal region interferes with the MCP1-CCR2 interaction. Moreover, FL-MCP1 and K104Stop-MCP1 stimulation leads to activation of Rac1, a small GTPase involved in cell migration. Conversely, MCP1-stimulated microglial migration is blocked by the Rac1 inhibitor, NSC23766, demonstrating the requirement for Rac1 effector pathways in this response. Taken together, we propose a model for MCP1 localization, activation, and function based on the initial presence and then removal of its C terminus, coupled with a requisite downstream signaling pathway from CCR2 stimulation to Rac1 activation.  相似文献   

17.
Chemotaxis of amoeboid cells is driven by actin filaments in leading pseudopodia and actin-myosin filaments in the back and at the side of the cell to suppress pseudopodia. In Dictyostelium, cGMP plays an important role during chemotaxis and is produced predominantly by a soluble guanylyl cyclase (sGC). The sGC protein is enriched in extending pseudopodia at the leading edge of the cell during chemotaxis. We show here that the sGC protein and the cGMP product have different functions during chemotaxis, using two mutants that lose either catalytic activity (sGCDelta cat) or localization to the leading edge (sGCDeltaN). Cells expressing sGCDeltaN exhibit excellent cGMP formation and myosin localization in the back of the cell, but they exhibit poor orientation at the leading edge. Cells expressing the catalytically dead sGCDelta cat mutant show poor myosin localization at the back, but excellent localization of the sGC protein at the leading edge, where it enhances the probability that a new pseudopod is made in proximity to previous pseudopodia, resulting in a decrease of the degree of turning. Thus cGMP suppresses pseudopod formation in the back of the cell, whereas the sGC protein refines pseudopod formation at the leading edge.  相似文献   

18.
H Allmeier  B Cresnar  M Greck  R Schmitt 《Gene》1992,111(1):11-20
The complete 11,139-nucleotide sequence of transposon Tn1721 has been determined. It contains three 38-bp inverted repeats, and (in this order) a new orfI, a resolution site (res), genes encoding resolvase (tnpR), transposase (tnpA), tetracycline-resistance (TcR) repressor (tetR), TcR (tetA) and a truncated transposase gene (tnpA'). The modulator origin of Tn1721 from at least three separate sources is supported by the distinctive codon usages of orfI, tnpR/tnpA and tetR/tetA, and by sequence similarities with Tn501 (tnpR/tnpA) and RP1 (tetR/tetA). The ORFI-encoded 56-kDa polypeptide exhibits features of a methyl-accepting chemotaxis protein (MCP) with a conserved signal domain and a potential transmembrane domain; this polypeptide cross-reacts with anti-MCP antiserum. Like chemotaxis genes, orfI is transcribed from a sigma 28-like promoter. The overexpressed orfI gene product interferes with MCP-dependent chemotaxis suggesting that it completes for soluble transducer protein(s) in the cell. The potential selective advantage of this novel transposon-borne gene is discussed.  相似文献   

19.
In bacterial chemotaxis, adaptation is correlated with methylation or demethylation of methyl-accepting chemotaxis proteins (MCPs). Each protein migrates as a characteristic set of multiple bands in sodium dodecylsulfate polyacrylamide gel electrophoresis. The changes in MCP methylation that accompany adaptation are not the same for all bands of a set. Adaptation to a type II repellent stimulus results in an overall decrease in MCP II methylation, but also in an increase in the amount of radioactive methyl groups in the upper band of the set. We demonstrate that this increase is not due to new methylation, but rather to reduced electrophoretic mobility of previously methylated molecules that have lost some but not all of their methyl groups. We suggest that the pattern of multiple bands is a direct reflection of multiple sites for methylation on MCP molecules, and that the distribution of radiolabel among the bands is determined by the total extent of methylation. The patterns of methylated peptides produced by limited proteolysis of different MCP bands imply that methylation of the multiple sites on a molecule may occur in a specific order.  相似文献   

20.
We have investigated the conditions required for polar localization of the CheZ phosphatase by using a CheZ-green fluorescent protein fusion protein that, when expressed from a single gene in the chromosome, restored chemotaxis to a DeltacheZ strain. Localization was observed in wild-type, DeltacheZ, DeltacheYZ, and DeltacheRB cells but not in cells with cheA, cheW, or all chemoreceptor genes except aer deleted. Cells making only CheA-short (CheA(S)) or CheA lacking the P2 domain also retained normal localization, whereas cells producing only CheA-long or CheA missing the P1 and P2 domains did not. We conclude that CheZ localization requires the truncated C-terminal portion of the P1 domain present in CheA(S). Missense mutations targeting residues 83 through 120 of CheZ also abolished localization. Two of these mutations do not disrupt chemotaxis, indicating that they specifically prevent interaction with CheA(S) while leaving other activities of CheZ intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号