首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-cost sago starch was used as a carbon source for production of the exopolysaccharide kefiran by Lactobacillus kefiranofaciens. A simultaneous saccharification and fermentation process of sago starch for kefiran production was evaluated. Factors affecting the process such as an initial pH, temperature, starch concentration, including a mixture of α-amylase and glucoamylase were determined. The highest kefiran concentration of 0.85 g/l was obtained at the initial pH of 5.5, temperature of 30 °C, starch concentration of 4% and mixed-enzymes with activity of 100 U/g-starch. The use of a mixture of α-amylase and glucoamylase could enhance the productivity compared to the use of α-amylase alone. The optimal ratio of α-amylase to glucoamylase of 60:40 gave the highest kefiran production rate of 11.83 mg/l/h. This study showed that sago starch could serve as a low-cost substrate for kefiran production.  相似文献   

2.
The ability of the ascomycete Morchella esculenta to degrade starch and upgrade nutritional value of cornmeal during solid-state fermentation (SSF) was studied. On the basal medium, α-amylase activity of M. esculenta reached its maximum value of 215 U g−1 of culture on day 20 after inoculation. Supplementation of glucose, yeast extract to the basal medium caused a significant increase in either the degradation rate of starch or the mycelial biomass as compared with control (P < 0.01). Through orthogonal experiments, the theoretical optimum culture medium for SSF of this fungus was the following: 100 g cornmeal, ground to 30-mesh powder, moistened with 67 ml of nutrient salt solution supplemented with 3 g yeast extract and 10 g glucose per liter. Under the optimum culture condition, the degradation rate of starch reached its maximum values of 74.8%; the starch content of the fermented product decreased from 64.5 to 23.5%.  相似文献   

3.
The characterization of corn starch (CS) films impregnated with CaCO3 nanoparticles was investigated. Criteria such as morphology, crystallinity, water vapor permeability (WVP), opacity, and mechanical properties were the focus of the investigation. It was found that the CaCO3 contents had significant effects on the tensile properties of the nanocomposite films. The addition of CaCO3 nanoparticles to the CS films significantly increased tensile strength from 1.40 to 2.24 MPa, elongation from 79.21 to 118.98%, and Young’s modulus from 1.82 to 2.41 MPa. The incorporation of CaCO3 nanoparticles increased the opacity of films, lowered the degree of WVP and film solubility value compared to those of the CS films. The results of scanning electron microscopy (SEM) showed that with the increase of CaCO3 nanoparticles content in starch films, the roughness of the films increased, and pores or cavities were found on the surface of the films, while small cracks were observed in the structures of the fractured surfaces. X-ray diffraction showed that the addition of nanoparticles increased the peaks in the intensity of films.  相似文献   

4.
The α-amylase encoding gene from acidophilic bacterium Bacillus acidicola was cloned into pET28a(+) vector and expressed in Escherichia coli BL21 (DE3). The recombinant E. coli produced a 15-fold higher α-amylase than B. acidicola strain. The recombinant α-amylase was purified to homogeneity by one-step nickel affinity chromatography using Ni2+-NTA resin with molecular mass of 62 KDa. It is active in the pH range between 3.0 and 7.0 and 30 and 100 °C with optimum at pH 4.0 and 60 °C. The enzyme is Ca2+-independent with K m and k cat values (on soluble starch) of 1.6 mg ml−1 and 108.7 s−1, respectively. The α-amylase of B. acidicola is acidstable, high maltose forming and Ca2+-independent, and therefore, is a suitable candidate for starch hydrolysis and baking.  相似文献   

5.
The amylopullulanse produced by Bacillus sp. DSM 405 was purified to homogeneity. It exhibited dual activity, cleaving the α1-4 bonds in starch, releasing a range of malto-oligosaccharides, and also cleaving the α1-6 bonds in pullulan, releasing maltotriose as the sole end-product. The enzyme was a glycoprotein and had a relative molecular mass of 126 000 and an isoelectric point of 4.3. While the enzyme was optimally active on starch at pH 6.5 and at pH 6.0 on pullulan, activity on both substrates was maximal at 70 °C. Kinetic analyses of the enzyme in a system that contained both starch and pullulan as two competing substrates demonstrated the dual specificity of the enzyme. Chemical modification of the carboxyl groups within the active centre of the protein showed that one active site was responsible for hydrolysis of the α1-4 and α1-6 bonds in starch and pullulan respectively. This is the first comprehensive investigation of an amylopullulanse produced by an aerobic bacterium, showing a single active site responsible for both activities. Received: 3 August 1998 / Received revision: 13 October 1998 / Accepted: 16 October 1998  相似文献   

6.
Enzymes that convert starch and dextrins to α,α-trehalose and glucose were found in cell homogenates of the hyperthermophilic acidophilic archaeon Sulfolobus shibatae DMS 5389. Three enzymes were purified and characterized. The first, the S. shibatae trehalosyl dextrin-forming enzyme (SsTDFE), transformed starch and dextrins to the corresponding trehalosyl derivatives with an intramolecular transglycosylation process that converted the glucosidic linkage at the reducing end from α-1,4 to α-1,1. The second, the S. shibatae trehalose-forming enzyme (SsTFE), hydrolyzed the α-1,4 linkage adjacent to the α-1,1 bond of trehalosyl dextrins, forming trehalose and lower molecular weight dextrins. These two enzymes had molecular masses of 80 kDa and 65 kDa, respectively, and showed the highest activities at pH 4.5. The apparent optimal temperature for activity was 70°C for SsTDFE and 85°C for SsTFE. The third enzyme identified was an α-glycosidase (SsαGly), which catalyzed the hydrolysis of the α-1,4 glucosidic linkages in starch and dextrins, releasing glucose in a stepwise manner from the nonreducing end of the polysaccharide chain. The enzyme had a molecular mass of 313 kDa and showed the highest activity at pH 5.5 and at 85°C. Received: October 29, 1997 / Accepted: April 29, 1998  相似文献   

7.
We successfully demonstrated batch ethanol fermentation repeated ten times from raw starch with high ethanol productivity. We constructed a yeast diploid strain coexpressing the maltose transporter AGT1, α-amylase, and glucoamylase. The introduction of AGT1 allows maltose and maltotriose fermentation as well as the improvement of amylase activities. We also found that α-amylase activity during fermentation was retained by the addition of 10 mM calcium ion and that the highest α-amylase activity was 9.26 U/ml during repeated fermentation. The highest ethanol productivity was 2.22 g/l/h at the fourth batch, and after ten cycles, ethanol productivity of more than 1.43 g/l/h was retained, as was α-amylase activity at 6.43 U/ml.  相似文献   

8.
9.
When gelification is performed by freezing–thawing repeated cycles, the resultant gel-like polymer systems are called cryogels. This work aims to assess the effect of the addition of glutaraldehyde and 18 Crown Ether-6 on surface properties and protein loading of dried chitosan cryogel films. Residual water content of treated chitosan membranes ranged between 11.93 and 13.86%, while their water activities vary from 0.5 to 0.7 (measured from 4 to 60 °C). Based on thermal data, water evaporation peak and degradation temperatures of chitosan membranes shifted to a higher temperature for crosslinked samples. X-ray diffractograms provide high values of crystallinity for all the samples (70.67–92.86%), the highest value being for the glutaraldehyde-treated membrane. Candida rugosa lipase can be immobilized successfully on chitosan membranes. Lipase immobilized on glutaraldehyde-crosslinked chitosan yielded the highest efficiency in terms of total coupled protein and protein loading efficiency.  相似文献   

10.
A moderately halophilic bacterium, Kocuria varians, was found to produce active α-amylase (K. varians α-amylase (KVA)). We have observed at least six different forms of α-amylase secreted by this bacterium into the culture medium. Characterization of these KVA forms and cloning of the corresponding gene revealed that KVA comprises pre-pro-precursor form of α-amylase catalytic domain followed by the tandem repeats, which show high similarity to each other and to the starch binding domain (SBD) of other α-amylases. The observed six forms were most likely derived by various processing of the protein product. Recombinant KVA protein was successfully expressed in Escherichia coli as a fusion protein and was purified with affinity chromatography after cleavage from fusion partner. The highly acidic amino acid composition of KVA and the highly negative electrostatic potential surface map of the modeled structure strongly suggested its halophilic nature. Indeed, KVA showed distinct salt- and time-dependent thermal reversibility: when α-amylase was heat denatured at 85°C for 3 min in the presence of 2 M NaCl, the activity was recovered upon incubation on ice (50% recovery after 15 min incubation). Conversely, KVA denatured in 0.1 M NaCl was not refolded at all, even after prolonged incubation. KVA activity was inhibited by proteinaceous α-amylase inhibitor from Streptomyces nitrosporeus, which had been implicated to inhibit only animal α-amylases. KVA with putative SBD regions was found to digest raw starch.  相似文献   

11.
Summary Various kinds of substrates were tested for cyclodextrin production with cyclodextrin glucanotransferase (CGTase) from Bacillus megaterium. The enzyme formed cyclodextrin from different kinds of starch, dextrins, amylose, and amylopectin. However, the highest degree of conversion was obtained from starch. Corn starch appeared to be the best substrate – the cyclodextrin yield was 50.9%. The effect of molecular mass and preliminary treatment of starch with α-amylase on the CD yield was investigated. It was proved that CGTase preferred native starch with high molecular mass and low dextrose equivalent. The preliminary treatment with α-amylase occurred to be inefficient and unnecessary since it did not lead to an increase in the CD yield. Some of the substrates were treated with pullulanase. The effect of debranching was highest in the case of corn starch: the cyclodextrin yield increased by 10%.  相似文献   

12.
Bacillus sp. GRE1 isolated from an Ethiopian hyperthermal spring produced raw-starch digesting, Ca2+-independent thermostable α-amylase. Enzyme production in shake flask experiments using optimum nutrient supplements and environmental conditions was 2,360 U l−1. Gel filtration chromatography yielded a purification factor of 33.6-fold and a recovery of 46.5%. The apparent molecular weight of the enzyme was 55 kDa as determined by SDS-PAGE. Presence or absence of Ca2+ produced similar temperature optima of 65–70°C. The optimum pH was in the range of 5.5–6.0. The enzyme maintained 50% of its original activity after 45 min of incubation at 80°C and was stable at a pH range of 5.0–9.0. The V max and K m values for soluble starch were 42 mg reducing sugar min−1 and 4.98 mg starch ml−1, respectively. Strong inhibitors of enzyme activity included Cu2+, Zn2+ and Fe2+. The enzyme coding gene and the deduced protein translation revealed a characteristic but markedly atypical homology to Bacillus species α-amylase sequences. The enzyme hydrolyzed wheat, corn and tapioca starch granules efficiently below their gelatinization temperatures. Rather than the higher oligosaccharides normally produced by Bacillus α-amylases operating at high temperatures, maltose was the major hydrolysis product with the present enzyme.  相似文献   

13.
Insects feeding on stored grains cause considerable damage to harvested cereals and legumes every year. The use of α-amylase inhibitors to interfere with the pest’s digestion process has become an interesting alternative biocontrolling agent. In this study, we have studied the interactions of α-amylase inhibitors from Albizia lebbeck seeds with the amylases of coleopteran and lepidopteran insect pests. We isolated and purified the α-amylase inhibitor using acetone precipitation and gel filtration chromatography. Two prominent activity bands of α-amylase inhibitors were detected in electrophoretic analysis using 8% starch PAGE. We found that the α-amylase inhibitor, isolated as a monomer, had a molecular weight of 14.4 kDa. The α-amylase inhibitor was purified 36.15-fold with gel filtration chromatography. Its specific activity was determined at 14.4 U/mg/min. Feeding analysis of Tribolium confusum larvae on a diet containing purified α-amylase inhibitor from Albizia lebbeck revealed that survival of the larvae was severely affected, with the highest mortality rate occurring on the fifth day of feeding. We found that the isolated α-amylase inhibitor inhibits T. confusum and Helicoverpa armigera α-amylases in electrophoretic analysis as well as in solution assays. The isolated α-amylase inhibitor was found to be resistant to commercial protease as well as T. confusum and H. armigera digestive proteinases. The isolated α-amylase inhibitor was degraded by heating above 60°C. Our results suggest that A. lebbeck α-amylase inhibitor could be a useful future biocontrolling agent.  相似文献   

14.
The purpose of this study was to examine the stability of biopolymer particles formed by heating electrostatic complexes of β-lactoglobulin and sugar beet pectin together (pH 5, 80 °C for 15 min). The effects of electrostatic interactions on the formation and stability of the particles were investigated by incorporation of different salt levels (0 to 200 mM NaCl) during the preparation procedure. Biopolymer particles were characterized by turbidity, electrophoretic mobility, dynamic light scattering, and visual observance. Salt inclusion (≥25 mM) prior to heating β-lactoglobulin/pectin complexes led to the formation of large biopolymer particles (d > 1,000 nm) that rapidly sedimented, but salt inclusion after heating (0 to 200 mM) led to the formation of biopolymer particles that remained relatively small (d < 350 nm) and were stable to sedimentation. The biopolymer particles formed in the absence of salt remained stable over a wide range of pH values (e.g., pH 3 to 7 in the presence of 200 mM NaCl). These biopolymer particles may therefore be suitable for application in a number of food products as delivery systems, clouding agents, or texture modifiers.  相似文献   

15.
Bacterial cellulose (BC) is a biopolymer with applications in numerous industries such as food and pharmaceutical sectors. In this study, various hydrocolloids including modified starches (oxidized starch—1404 and hydroxypropyl starch—1440), locust bean gum, xanthan gum (XG), guar gum, and carboxymethyl cellulose were added to the Hestrin-Schramm medium to improve the production performance and microstructure of BC by Gluconacetobacter entanii isolated from coconut water. After 14-day fermentation, medium supplemented with 0.1% carboxymethyl cellulose and 0.1% XG resulted in the highest BC yield with dry BC content of 9.82 and 6.06 g/L, respectively. In addition, scanning electron microscopy showed that all modified films have the characteristic three-dimensional network of cellulose nanofibers with dense structure and low porosity as well as larger fiber size compared to control. X-ray diffraction indicated that BC fortified with carboxymethyl cellulose exhibited lower crystallinity while Fourier infrared spectroscopy showed characteristic peaks of both control and modified BC films.  相似文献   

16.
A fragment coding for a putative extracellular α-amylase, from the genomic library of the yeast Saccharomycopsis fibuligera KZ, has been subcloned into yeast expression vector pVT100L and sequenced. The nucleotide sequence revealed an ORF of 1,485 bp coding for a 494 amino acid residues long protein with 99% identity to the α-amylase Sfamy from S. fibuligera HUT 7212. The S. fibuligera KZ α-amylase (Sfamy KZ) belongs to typical extracellular fungal α-amylases classified in the glycoside hydrolase family 13, subfamily 1, as supported also by clustering observed in the evolutionary tree. Sfamy KZ, in addition to the essential GH13 α-amylase three-domain arrangement (catalytic TIM barrel plus domains B and C), does not contain any distinct starch-binding domain. Sfamy KZ was expressed as a recombinant protein in Saccharomyces cerevisiae and purified to electrophoretic homogeneity. The enzyme had a molecular mass 53 kDa and contained about 2.5% of carbohydrate. The enzyme exhibited pH and temperature optima in the range of 5–6 and 40–50 °C, respectively. Stable adsorption of the enzyme to starch granules was not detected but a low degradation of raw starch in a concentration-dependent manner was observed.  相似文献   

17.
Treatment of Aspergillus niveus with 30 μg tunicamycin/ml did not interfere with α-glucosidase production, secretion, or its catalytic properties. Fully- and under-glycosylated forms of the enzyme had similar molecular masses, ~56 kDa. Moreover, the absence of N-glycans did not affect either pH optimum (6.0) or temperature optimum (65°C). The Km and Vmax values of under- and fully-glycosylated forms of α-glucosidase were similar when assessed for hydrolysis of starch (~0.6 mg/ml, ~350 μmol glucose per min per ml), maltose (~0.54 μmol, ~330 μmol glucose per min per ml) and p-nitrophenyl-α-d-glucopyranoside (~0.54 μmol, ~8.28 μmol p-nitrophenol per min per ml). However, the under-glycosylated form was sensitive to high temperatures probably because, in addition to stabilizing the protein conformation, glycosylation may also prevent unfolded or partially folded proteins from aggregating. Binding assays clearly showed that the under-glycosylated protein did not bind to concanavalin A but has conserve its jacalin-binding property, suggesting that only O-glycans might be intact on the tunicamycin treated form of the enzyme.  相似文献   

18.
Kim HR  Im YK  Ko HM  Chin JE  Kim IC  Lee HB  Bai S 《Biotechnology letters》2011,33(8):1643-1648
Industrial strains of a polyploid, distiller’s Saccharomyces cerevisiae that produces glucoamylase and α-amylase was used for the direct fermentation of raw starch to ethanol. Strains contained either Aspergillus awamori glucoamylase gene (GA1), Debaryomyces occidentalis glucoamylase gene (GAM1) or D. occidentalis α-amylase gene (AMY), singly or in combination, integrated into their chromosomes. The strain expressing both GA1 and AMY generated 10.3% (v/v) ethanol (80.9 g l−1) from 20% (w/v) raw corn starch after 6 days of fermentation, and decreased the raw starch content to 21% of the initial concentration.  相似文献   

19.
α-amy gene amplified from barley genome was cloned into MCS of pGAP9K to generate pGAP9K-α-amy which was then transformed into Pichia pastoris GS115 by electroporation. Transformants with multi-copies and high expression for the foreign gene were selected on G418 containing plate and expression analysis. The fermentation was carried out in a 50 l bioreactor with 20 l working volume, using a high-density cell culture method by continuously feeding with 50% glycerol-0.8% PTM4 to the growing culture for 54 h at 30°C. Under the control of GAP promoter (pGAP), α-amy gene was constitutively expressed. At the end of the fermentation, the α-AMY expression reached 125 mg/l, while the biomass growth was 186 as measured by absorption of 600 nm. The secreted α-AMY was purified to 97.5% by SP-Sepharose FF ion-exchange chromatography and affinity purification. The recombinant α-AMY showed activity on hydrolysis of starch.  相似文献   

20.
The objective was to investigate the suitable polymeric films for the development of diltiazem hydrochloride (diltiazem HCl) transdermal drug delivery systems. Hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) were used as hydrophilic and hydrophobic film formers, respectively. Effects of HPMC/EC ratios and plasticizers on mechanical properties of free films were studied. Effects of HPMC/EC ratios on moisture uptake, in vitro release and permeation through pig ear skin of diltiazem HCl films were evaluated. Influence of enhancers including isopropyl myristate (IPM), isopropyl palmitate (IPP), N-methyl-2-pyrrolidone, oleic acid, polyethylene glycol 400, propylene glycol, and Tween80 on permeation was evaluated. It was found that addition of EC into HPMC film produced lower ultimate tensile strength, percent elongation at break and Young’s modulus, however, addition of EC up to 60% resulted in too hard film. Plasticization with dibutyl phthalate (DBP) produced higher strength but lower elongation as compared to triethyl citrate. The moisture uptake and initial release rates (0–1 h) of diltiazem HCl films decreased with increasing the EC ratio. Diltiazem HCl films (10:0, 8:2 and 6:4 HPMC/EC) were studied for permeation because of the higher release rate. The 10:0 and 8:2 HPMC/EC films showed the comparable permeation-time profiles, and had higher flux values and shorter lag time as compared to 6:4 HPMC/EC film. Addition of IPM, IPP or Tween80 could enhance the fluxes for approx. three times while Tween80 also shorten the lag time. In conclusion, the film composed of 8:2 HPMC/EC, 30% DBP and 10% IPM, IPP or Tween80 loaded with 25% diltiazem HCl should be selected for manufacturing transdermal patch by using a suitable adhesive layer and backing membrane. Further in vitro permeation and in vivo performance studies are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号