首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soluble β-galactoside-binding lectin was purified by gel filtration chromatography from Bubalus bubalis heart. Its metal-independent nature, molecular weight of 14.5 kDa, preferential affinity for β-d-lactose, and 87–92% identity with carbohydrate recognition domain of previously reported galectin-1 confirmed its inclusion in galectin-1 subfamily. Stokes radii determination using gel filtration under reducing and non-reducing conditions revealed its homo-dimeric nature, further confirming its Gal-1 nomenclature. The purified lectin was found to be the most stable mammalian heart galectin purified till date, suggesting its preferential use in various recognition studies. Treatment of the purified lectin with oxidizing agent, thiol blocking reagents, denaturants, and detergents resulted in significant changes in UV–VIS, fluorescence, CD and FTIR spectra, which strongly emphasized the important aspect of regular secondary structure of galectins for the maintenance of their active conformation. Reduction of the activity of the purified lectin after oxidation by H2O2, with remarkable fluorescence quenching, may suggest potential role for galectin-1 in free radical-induced, oxidative stress-mediated cardiovascular disorders. The predictions of bioinformatics studies were found to be in accordance with the results obtained in wet lab.  相似文献   

2.
To develop a new skin whitening agent, arbutin-β-glycosides were synthesized and evaluated for their melanogenesis inhibitory activities. Three active compounds were synthesized via the transglycosylation reaction of Thermotoga neapolitana β-glucosidase and purified by recycling preparative HPLC. As compared with arbutin (IC50 = 6 mM), the IC50 values of these compounds were 8, 10, and 5 mM for β-d-glucopyranosyl-(1→6)-arbutin, β-d-glucopyranosyl-(1→4)-arbutin, and β-d-glucopyranosyl-(1→3)-arbutin, respectively. β-d-Glucosyl-(1→3)-arbutin also exerted the most profound inhibitory effects on melanin synthesis in B16F10 melanoma cells. Melanin synthesis was inhibited to a significant degree at 5 mM, at which concentration the melanin content was reduced to below 70% of that observed in the untreated cells. Consequently, β-d-glucopyranosyl-(1→3)-arbutin is a more effective depigmentation agent and is also less cytotoxic than the known melanogenesis inhibitor, arbutin.  相似文献   

3.
A bacterium (strain HC1) capable of assimilating rice bran hemicellulose was isolated from a soil and identified as belonging to the genus Paenibacillus through taxonomical and 16S rDNA sequence analysis. Strain HC1 cells grown on rice bran hemicellulose as a sole carbon source inducibly produced extracellular xylanase and intracellular glycosidases such as β-d-glucosidase and β-d-arabinosidase. One of them, β-d-glucosidase was further analyzed. A genomic DNA library of the bacterium was constructed in Escherichia coli and gene coding for β-d-glucosidase was cloned by screening for β-d-glucoside-degrading phenotype in E. coli cells. Nucleotide sequence determination indicated that the gene for the enzyme contained an open reading frame consisting of 1,347 bp coding for a polypeptide with a molecular mass of 51.4 kDa. The polypeptide exhibits significant homology with other bacterial β-d-glucosidases and belongs to glycoside hydrolase family 1. β-d-Glucosidase purified from E. coli cells was a monomeric enzyme with a molecular mass of 50 kDa most active at around pH 7.0 and 37°C. Strain HC1 glycosidases responsible for degradation of rice bran hemicellulose are expected to be useful for structurally determining and molecularly modifying rice bran hemicellulose and its derivatives.  相似文献   

4.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4′,6′-di-O-acetyl-2′,3′-di-O-alka(e)noyl)-β-d-mannopyranosyl]-d-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids.  相似文献   

5.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

6.
Xylem parenchyma cells (XPCs) in trees adapt to subzero temperatures by deep supercooling. Our previous study indicated the possibility of the presence of diverse kinds of supercooling-facilitating (SCF; anti-ice nucleation) substances in XPCs of katsura tree (Cercidiphyllum japonicum), all of which might have an important role in deep supercooling of XPCs. In the previous study, a few kinds of SCF flavonol glycosides were identified. Thus, in the present study, we tried to identify other kinds of SCF substances in XPCs of katsura tree. SCF substances were purified from xylem extracts by silica gel column chromatography and Sephadex LH-20 column chromatography. Then, four SCF substances isolated were identified by UV, mass and nuclear magnetic resonance analyses. The results showed that the four kinds of hydrolyzable gallotannins, 2,2′,5-tri-O-galloyl-α,β-d-hamamelose (trigalloyl Ham or kurigalin), 1,2,6-tri-O-galloyl-β-d-glucopyranoside (trigalloyl Glc), 1,2,3,6-tetra-O-galloyl-β-d-glucopyranoside (tetragalloyl Glc) and 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranoside (pentagalloyl Glc), in XPCs exhibited supercooling capabilities in the range of 1.5–4.5°C, at a concentration of 1 mg mL−1. These SCF substances, including flavonol glycosides and hydrolyzable gallotannins, may contribute to the supercooling in XPCs of katsura tree.  相似文献   

7.
The genes encoding the catalytic domains (CD) of the three endoglucanases (EG I; Cel7B, EG II; Cel5A, and EG III; Cel12A) from Trichoderma reesei QM9414 were expressed in Escherichia coli strains Rosetta-gami B (DE3) pLacI or Origami B (DE3) pLacI and were found to produce functional intracellular proteins. Protein production by the three endoglucanase transformants was evaluated as a function of growth temperature. Maximal productivity of EG I-CD at 15°C, EG II-CD at 20°C and EG III at 37°C resulted in yields of 6.9, 72, and 50 mg/l, respectively. The endoglucanases were purified using a simple purification method based on removing E. coli proteins by isoelectric point precipitation. Specific activity toward carboxymethyl cellulose was found to be 65, 49, and 15 U/mg for EG I-CD, EG II-CD, and EG III, respectively. EG II-CD was able to cleave 1,3–1,4-β-d-glucan and soluble cellulose derivatives. EG III was found to be active against cellulose, 1,3–1,4-β-d-glucan and xyloglucan, while EG I-CD was active against cellulose, 1,3–1,4-β-d-glucan, xyloglucan, xylan, and mannan.  相似文献   

8.
It has been previously reported that a glucoamylase from Curvularia lunata is able to hydrolyze the terminal 1,2-linked rhamnosyl residues of sugar chains at C-3 position of steroidal saponins. In this work, the enzyme was isolated and identified after isolation and purification by column chromatography including gel filtration and ion-exchange chromatography. Analysis of protein fragments by MALDI-TOF/TOF™ proteomics Analyzer indicated the enzyme to be 1,4-alpha-D-glucan glucohydrolase EC 3.2.1.3, GA and had considerable homology with the glucoamylase from Aspergillus oryzae. We first found that the glucoamylase was produced from C. lunata and was able to hydrolyze the terminal rhamnosyl of steroidal saponins. The enzyme had the general character of glucoamylase, which hydrolyze starch. It had a molecular mass of 66 kDa and was optimally active at 50°C, pH 4, and specific activity of 12.34 U mg of total protein−1 under the conditions, using diosgenin-3-O-α-L-rhamnopyranosyl(1→4)-[α-L-rhamnopyranosyl (1→2)]-β-D-glucopyranoside (compound II) as the substrate. Furthermore, four kinds of commercial glucoamylases from Aspergillus niger were investigated in this work, and they had the similar activity in hydrolyzing terminal rhamnosyl residues of steroidal saponin. This project was supported by the National Natural Science Foundation of China (NSFC; 30572333).  相似文献   

9.
The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 →, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in Mw = 62 kDa, corresponding to 64 repeating units in the EPS.  相似文献   

10.
An insertion in the promoter of the Arabidopsis thaliana QUA1 gene (qua1-1 allele) leads to a dwarf plant phenotype and a reduction in cell adhesion, particularly between epidermal cells in seedlings and young leaves. This coincides with a reduction in the level of homogalacturonan epitopes and the amount of GalA in isolated cell walls (Bouton et al., Plant Cell 14: 2577 2002). The present study was undertaken in order to investigate further the link between QUA1 and cell wall biosynthesis. We have used rapidly elongating inflorescence stems to compare cell wall biosynthesis in wild type and qua1-1 mutant tissue. Relative to the wild type, homogalacturonan α-1-4-D-galacturonosyltransferase activity was consistently reduced in qua1-1 stems (by about 23% in microsomal and 33% in detergent-solubilized membrane preparations). Activities of β-1-4-D-xylan synthase, β-1-4-D-galactan synthase and β-glucan synthase II activities were also measured in microsomal membranes. Of these, only β-1-4-D-xylan synthase was affected, and was reduced by about 40% in qua1-1 stems relative to wild type. The mutant phenotype was apparent in inflorescence stems, and was investigated in detail using microscopy and cell wall composition analyses. Using in situ PCR techniques, QUA1 mRNA was localized to discrete cells of the vascular tissue and subepidermal layers. In mutant stems, the organization of these tissues was disrupted and there was a modest reduction in homogalacturonan (JIM5) epitopes. This study demonstrates a specific role for QUA1 in the development of vascular tissue in rapidly elongating inflorescence stems and supports a role of QUA1 in pectin and hemicellulose cell wall synthesis through affects on α-1,4-D-galacturonosyltransferase and β-1,4-D-xylan synthase activities.  相似文献   

11.
When Phanerochaete chrysosporium was grown with laminarin (a β-1,3/1,6-glucan) as the sole carbon source, a β-1,3-glucanase with a molecular mass of 36 kDa was produced as a major extracellular protein. The cDNA encoding this enzyme was cloned, and the deduced amino acid sequence revealed that this enzyme belongs to glycoside hydrolase family 16; it was named Lam16A. Recombinant Lam16A, expressed in the methylotrophic yeast Pichia pastoris, randomly hydrolyzes linear β-1,3-glucan, branched β-1,3/1,6-glucan, and β-1,3-1,4-glucan, suggesting that the enzyme is a typical endo-1,3(4)-β-glucanase (EC 3.2.1.6) with broad substrate specificity for β-1,3-glucans. When laminarin and lichenan were used as substrates, Lam16A produced 6-O-glucosyl-laminaritriose (β-d-Glcp-(1–>6)-β-d-Glcp-(1–>3)-β-d-Glcp-(1–>3)-d-Glc) and 4-O-glucosyl-laminaribiose (β-d-Glcp-(1–>4)-β-d-Glcp-(1–>3)-d-Glc), respectively, as one of the major products. These results suggested that the enzyme strictly recognizes β-d-Glcp-(1–>3)-d-Glcp at subsites −2 and −1, whereas it permits 6-O-glucosyl substitution at subsite +1 and a β-1,4-glucosidic linkage at the catalytic site. Consequently, Lam16A generates non-branched oligosaccharide from branched β-1,3/1,6-glucan and, thus, may contribute to the effective degradation of such molecules in combination with other extracellular β-1,3-glucanases.  相似文献   

12.
The filamentous fungus Stachybotrys sp has been shown to possess a rich β-glucosidase system composed of five β-glucosidases. One of them was already purified to homogeneity and characterized. In this work, a second β-glucosidase was purified and characterized. The filamentous fungal A19 strain was fed-batch cultivated on cellulose, and its extracellular cellulases (mainly β-glucosidases) were analyzed. The purified enzyme is a monomeric protein of 78 kDa molecular weight and exhibits optimal activity at pH 6.0 and at 50°C. The kinetic parameters, K m and V max, on para-nitro-phenyl-β-d-glucopyranosid (p-NPG) as a substrate were, respectively, 1.846 ± 0.11 mM and 211 ± 0.08 μmol min−1 ml−1. One interesting feature of this enzyme is its high stability in a wide range of pH from 4 to 10. Besides its aryl β-glucosidase activity towards salicin, methylumbellypheryl-β-d-glucoside (MU-Glc), and p-NPG, it showed a true β-glucosidase activity because it splits cellobiose into two glucose monomers. This enzyme has the capacity to synthesize short oligosaccharides from cellobiose as the substrate concentration reaches 30% with a recovery of 40%. We give evidences for the involvement of a transglucosylation to synthesize cellotetraose by a sequential addition of glucose to cellotriose.  相似文献   

13.
A type II arabinogalactan-degrading enzyme, termed Exo-1,3-Gal, was purified to homogeneity from the culture filtrate of Sphingomonas sp. 24T. It has an apparent molecular mass of 48 kDa by SDS–PAGE. Exo-1,3-Gal was stable from pH 3 to 10 and at temperatures up to 40 °C. The optimum pH and temperature for enzyme activity were pH 6 to 7 and 50 °C, respectively. Galactose was released from β-1,3-d-galactan and β-1,3-d-galactooligosaccharides by the action of Exo-1,3-Gal, indicating that the enzyme was an exo-β-1,3-d-galactanase. Analysis of the reaction products of β-1,3-galactotriose by high-performance anion-exchange chromatography revealed that the enzyme hydrolyzed the substrate in a non-processive mode. Exo-1,3-Gal bypassed the branching points of β-1,3-galactan backbones in larch wood arabinogalactan (LWAG) to produce mainly galactose, β-1,6-galactobiose, and unidentified oligosaccharides 1 and 2 with the molar ratios of 7:19:62:12. Oligosaccharides 1 and 2 were enzymatically determined to be β-1,6-galactotriose and β-1,6-galactotriose substituted with a single arabinofuranose residue, respectively. The ratio of side chains enzymatically released from LWAG was in good agreement with the postulated structure of the polysaccharide previously determined by chemical methods.  相似文献   

14.
A recombinant putative β-galactosidase from Thermoplasma acidophilum was purified as a single 57 kDa band of 82 U mg−1. The molecular mass of the native enzyme was 114 kDa as a dimer. Maximum activity was observed at pH 6.0 and 90°C. The enzyme was unstable below pH 6.0: at pH 6 its half-life at 75°C was 28 days but at pH 4.5 was only 13 h. Catalytic efficiencies decreased as p-nitrophenyl(pNP)-β-d-fucopyranoside (1067) > pNP-β-d-glucopyranoside (381) > pNP-β-d-galactopyranoside (18) > pNP-β-d-mannopyranoside (11 s−1 mM−1), indicating that the enzyme was a β-glycosidase.  相似文献   

15.
Cell aggregation in the marine sponge Microciona prolifera is mediated by a multimillion molecular-mass aggregation factor, termed MAF. Earlier investigations revealed that the cell aggregation activity of MAF depends on two functional domains: (i) a Ca2+-independent cell-binding domain and (ii) a Ca2+-dependent proteoglycan self-interaction domain. Structural analysis of involved carbohydrate fragments of the proteoglycan in the self-association established a sulfated disaccharide β-d-GlcpNAc3S-(1→3)-α-l-Fucp and a pyruvated trisaccharide β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp. Recent UV, SPR, and TEM studies, using BSA conjugates and gold nanoparticles of the synthetic sulfated disaccharide, clearly demonstrated self-recognition on the disaccharide level in the presence of Ca2+-ions. To determine binding forces of the carbohydrate–carbohydrate interactions for both synthetic MAF oligosaccharides, atomic force microscopy (AFM) studies were carried out. It turned out that, in the presence of Ca2+-ions, the force required to separate the tip and sample coated with a self-assembling monolayer of thiol-spacer-containing β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- was found to be quantized in integer multiples of 30 ± 6 pN. No binding was observed between the two monolayers in the absence of Ca2+-ions. Cd2+-ions could partially induce the self-interaction. In contrast, similar AFM experiments with thiol-spacer-containing β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- did not show a binding in the presence of Ca2+-ions. Also TEM experiments of gold nanoparticles coated with the pyruvated trisaccharide could not make visible aggregation in the presence of Ca2+-ions. It is suggested that the self-interaction between the sulfated disaccharide fragments is stronger than that between the pyruvated trisaccharide.  相似文献   

16.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

17.
Li X  Pei J  Wu G  Shao W 《Biotechnology letters》2005,27(18):1369-1373
For the first time, a β-glucosidase gene from the edible straw mushroom, Volvariella volvacea V1-1, has been over-expressed in E. coli. The gene product was purified by chromatography showing a single band on SDS-PAGE. The recombinant enzyme had a molecular mass of 380 kDa with subunits of 97 kDa. The maximum activity was at pH 6.4 and 50 °C over a 5 min assay. The purified enzyme was stable from pH 5.6–8.0, had a half life of 1 h at 45 °C. The β-glucosidase had a Km of 0.2 mM for p-nitrophenyl-β-D-glucopyranoside.  相似文献   

18.
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).  相似文献   

19.
The activity of a dye-linked l-proline dehydrogenase (dye-l-proDH) was found in the crude extract of an aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis JCM 11548, and was purified 163-fold through four sequential chromatography steps. The enzyme has a molecular mass of about 108 kDa and is a homodimer with a subunit molecular mass of about 46 kDa. The enzyme retained more than 90% of its activity after incubation at 100 °C for 120 min (pH 7.5) or after incubation at pHs 4.5–9.0 for 30 min at 50 °C. The enzyme catalyzed l-proline dehydrogenation to Δ1-pyroline-5-carboxylate using 2,6-dichloroindophenol (DCIP) as the electron acceptor and the Michaelis constants for l-proline and DCIP were 1.67 and 0.026 mM, respectively. The prosthetic group on the enzyme was identified as flavin adenine dinucleotide by high-performance liquid chromatography. The subunit N-terminal amino acid sequence was MYDYVVVGAG. Using that sequence and previously reported genome information, the gene encoding the enzyme (Pcal_1655) was identified. The gene was then cloned and expressed in Escherichia coli and found to encode a polypeptide of 415 amino acids with a calculated molecular weight of 46,259. The dye-l-proDH gene cluster in P. calidifontis inherently differs from those in the other hyperthermophiles reported so far.  相似文献   

20.
Low-specificity l-threonine aldolase, catalyzing the reversible cleavage/condensation reaction between l-threonine/l-allo-threonine and glycine plus acetaldehyde, was purified to homogeneity from Pseudomonas sp. NCIMB 10558. The enzyme has an apparent molecular mass of approximately 145 kDa and consists of four identical subunits with a molecular mass of 38 kDa. The enzyme, requiring pyridoxal- 5′-phosphate as a coenzyme, is strictly l-specific at the α position, whereas it can not distinguish between threo and erythro forms at the β position. Besides the reversible cleavage/condensation of threonine, the enzyme also catalyzes the reversible interconversion between glycine plus various aldehydes and l-β-hydroxy-α-amino acids, including l-β-(3,4-dihydroxyphenyl)serine, l-β-(3,4-met‐hylenedioxyphenyl)serine and l-β-phenylserine, providing a new route for the industrial production of these important amino acids. Received: 10 November 1997 / Received revision: 7 January 1998 / Accepted 30 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号