首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in surface charge density of liposomes induced by E. coli endotoxin were studied by microelectrophoresis. Endotoxin altered the surface charge of phosphatidylcholine liposomes from neutral to negative. The negative charge of the endotoxin-phosphatidylcholine complex was neutralized electrostatically by binding with Ca2+ (2 mM). Phosphatidylcholine liposomes were made positive by addition of the positively charged detergent, hexadecyltrimethylammonium chloride. Endotoxin made the positively charged liposomes less charged. On the other hand, phosphatidylserine liposomes which were negatively charged became less charged in the presence of high concentration of endotoxin (8 mg/ml). The endotoxin effect on phosphatidylserine liposomes was abolished by EDTA (1 mM) but potentiated by CaCl2 (0.1--2 mM). These results indicate that endotoxin interacts with liposomes both hydrophobically and electrostatically.  相似文献   

2.
Adsorption of serum proteins to the liposomal surface plays a critical role in liposome clearance from the blood. The aim of this study was to investigate the role of liposome-adsorbed serum proteins in the interaction of liposomes with hepatocytes. We analyzed the serum proteins adsorbing to the surface of differently composed small unilamellar liposomes during incubation with human or rat serum, and found that one protein, with a molecular weight of around 55 kDa, adsorbed in a large amount to negatively charged liposomes containing phosphatidylserine (PS) or phosphatidylglycerol (PG). The binding was dependent on the liposomal charge density. The ∼55-kDa protein was identified as β2-glycoprotein I (β2GPI) by Western blotting. Despite the high affinity of β2GPI for strongly negatively charged liposomes, in vitro uptake and binding experiments with isolated rat hepatocytes, Kupffer cells or liver endothelial cells, and with HepG2 cells showed no enhancing effect of this protein on the association of negatively charged liposomes with any of these cells. On the contrary, an inhibitory effect was observed. We conclude that despite abundant adsorption to negatively charged liposomes, β2GP1 inhibits, rather than enhances, liposome uptake by liver cells.  相似文献   

3.
In an attempt to gain insight into the physiological role of phosphatidylinositol turnover enhanced by extracellular stimuli, the physical properties of artificial membranes (egg yolk phosphatidylcholine/bovine brain phosphatidylserine) containing phosphatidylinositol or diacylglycerol were studied by ESR using spin probes and freeze-fracture electron microscopy. Diacylglycerol lost both the ability to form lipid bilayer structures and its susceptibility to calcium ions. Yeast phosphatidylinositol included in dipalmitoylphosphatidylcholine liposomes lowered the phase transition temperature of dipalmitoylphosphatidylcholine and expanded the temperature range of phase transition. However, diacylglycerol at the same concentration did not undergo the effects caused by phosphatidylinositol but the phase transition temperature was slightly raised. Phase separation of phosphatidylserine induced by calcium ions was enhanced when the phosphatidylinositol was replaced by diacylglycerol in phosphatidylcholine/ phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) mixtures. The mobility of phosphatidylcholine spin probe was decreased in phosphatidylcholine/ phosphatidylserine/diacylglycerol (3:5:2, by molar ratio) liposomes compared with phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) liposomes. An additional component from protonated stearic acid spin probes was observed in phosphatidylcholine/phosphatidylinositol (8:2, by molar ratio) liposomes at 40°C, whereas the component was not seen in phosphatidylcholine/diacylglycerol (8:2, by molar ratio) liposomes. This may indicate the alteration of surface charge induced by the replacement of phosphatidylinositol by diacylglycerol. Indeed, in the presence of 1 mM Ca2+, the additional component was removed by an electrostatic interaction between Ca2+ and phosphatidylinositol molecules in phosphatidylcholine/phosphatidylinositol liposomes at 40°C. These results support the hypothesis that the enhanced turnover of phosphatidylinositol may play a triggering role for various cellular responses to exogenous stimuli by altering membrane physical states.  相似文献   

4.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3–5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 μm diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

5.
Dimethyl sulfoxide (Me2SO) is a widely used cryoprotectant for biological structures such as membranes. Despite hundreds of studies on the effects of this molecule, surprisingly little is known about its cryoprotective mechanism. This study investigates the ability of various Me2SO analogs to serve as cryoprotectants for liposomes. The data show that an increase in hydrophobicity progressively reduces the cryoprotective effect of sulfoxides. Additional experiments using phospholipid vesicles of varying composition demonstrate the Me2SO is markedly less effective on liposomes carrying a net negative charge. In fact, cryoprotection by Me2SO was virtually eliminated in vesicles composed of 30% phosphatidylserine (a negatively charged lipid). Based on these results, we suggest that the polar sulfoxide moiety of Me2SO interacts electrostatically with phospholipid membranes and that this interaction is critical for Me2SO's cryoprotective effect for membranes.  相似文献   

6.
Lipoplexes, which are complexes between cationic liposomes (L+) and nucleic acids, are commonly used as a nucleic acid delivery system in vitro and in vivo. This study aimed to better characterize cationic liposome and lipoplex electrostatics, which seems to play a major role in the formation and the performance of lipoplexes in vitro and in vivo. We characterized lipoplexes based on two commonly used monocationic lipids, DOTAP and DMRIE, and one polycationic lipid, DOSPA—each with and without helper lipid (cholesterol or DOPE). Electrical surface potential (Ψ0) and surface pH were determined using several surface pH-sensitive fluorophores attached either to a one-chain lipid (4-heptadecyl hydroxycoumarin (C17HC)) or to the primary amino group of the two-chain lipids (1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein (CFPE) and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-7-hydroxycoumarin) (HC-DOPE). Zeta potentials of the DOTAP-based cationic liposomes and lipoplexes were compared with Ψ0 determined using C17HC. The location and relatively low sensitivity of fluorescein to pH changes explains why CFPE is the least efficient in quantifying the differences between the various cationic liposomes and lipoplexes used in this study. The fact that, for all cationic liposomes studied, those containing DOPE as helper lipid have the least positive Ψ0 indicates neutralization of the cationic charge by the negatively-charged phosphodiester of the DOPE. Zeta potential is much less positively charged than Ψ0 determined by C17HC. The electrostatics affects size changes that occurred to the cationic liposomes upon lipoplex formation. The largest size increase (based on static light scattering measurements) for all formulations occurred at DNA/L+ charge ratios 0.5-1. Comparing the use of the one-chain C17HC and the two-chain HC-DOPE for monitoring lipoplex electrostatics reveals that both are suitable, as long as there is no serum (or other lipidic assemblies) present in the medium; in the latter case, only the two-chain HC-DOPE gives reliable results. Increasing NaCl concentrations decrease surface potential. Neutralization by DNA is reduced in a NaCl-concentration-dependent manner.  相似文献   

7.
This paper explores the mechanism(s) whereby liposomes accumulate in chronically ischaemic myocardium and intestine. Plasma prepared from venous blood obtained at sites of myocardial and intestinal infarction does not promote the lysis of positively and negatively charged liposomes in vitro. Albumin-bound lysophosphatidylcholine (≥ 2 mM) lyses positively and negatively charged liposomes in vitro at similar rates. [99mTc]Diethylenetriamine pentaacetic acid (DTPA) entrapped in positively charged liposomes was accumulated in ischaemic rat caecum/colon 6 and 24 h after mesenteric ligation. Presumably allied to the accumulation of liposomal components, necrotic caecum/colon showed marked Ca2+ accumulation and phospholipid depletion. It is postulated that Ca2+ and Ca2+-activated membrane phospholipases may be implicated in the mechanism of liposome accumulation in chronic ischaemia.  相似文献   

8.
The model membrane approach was used to investigate the surface charge effect on the ion-antibiotic complexation process. Mixed monolayers of valinomycin and lipids were spread on subphases containing K+ or Na+. The surface charge density was modified by spreading ionizable valinomycin analogs on aqueous subphases of different pH or by changing the nature of the lipid (neutral, negatively charged) in the mixed film. Surface pressure and surface potential measurements demonstrated that a neutral lipid (phosphatidylcholine) or positively charged valinomycin analogs didn't enhance the antibiotic complexing capacity. However, a maximal complexation is reached for a critical lipid concentration in the valinomycin-phosphatidylserine mixed film. The role of the surface charge on the valinomycin complexing properties was examined in terms of the Gouy-Chapman theory. As a consequence of the negative charge of the lipid monolayer, the K+ concentration near the surface is larger than the bulk concentration, by a Boltzmann factor. A good agreement was observed between the experimental results and the theoretical predictions. Conductance measurements of asymmetric bilayers containing a neutral lipid (egg lecithin) on one side and a negatively charged lipid (phosphatidylserine) on the other, confirm the role of the surface charge. Indeed, addition of K+ to the neutral side of the bilayer containing valinomycin had no effect on the conductance whereas addition of K+ to the charged side of the bilayer caused a 80-fold conductance increase.  相似文献   

9.
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.  相似文献   

10.
We have studied the complement-activating properties of liposomes. We show that surface charge is a key determinant of complement-activating liposomes. The nature of the charge, whether negative or positive, appears to dictate which pathway of the complement system is activated. Phosphatidylcholine:cholesterol (PC:CHOL, 55:45 mol/mol) liposomes were made to exhibit a positive or negative surface charge by the addition of cationic or anionic lipids, respectively. Normal human or guinea pig serum was incubated with liposomes, followed by determining the residual hemolytic activity of the serum as a measure of complement activation. Negatively charged liposomes containing phosphatidyl-glycerol, phosphatidic acid, cardiolipin, phosphatidylinositol, or phosphatidylserine activated complement in a Ca(2+)-dependent manner suggesting activation occurred via the classical pathway. Positively charged liposomes containing stearylamine or 1,2-bis(oleoyloxy)-3-(trimethylammonio)propane activated complement via the alternative pathway. Neutral liposomes, PC:CHOL (55:45) and PC:CHOL:dipalmitoylphosphatidylethanolamine (35:45:20), failed to activate complement as measured by the hemolytic assays. We show that unsaturated liposomes are more potent complement activators than saturated liposomes and that 45 mol% cholesterol promotes complement protein-liposome interactions. Immunoblot analysis of phosphatidylglycerol-containing liposomes showed that C3b and C9 were associated with these liposomes. Thus, the complement consumption measured in the hemolytic assays represents active cleavage of the complement components and not passive adsorption to the liposome surface. These studies suggest that membranes composed of net charged phospholipids can activate the complement system. This observation underlines the importance in biologic membranes of complement regulatory proteins that protect normal cells from complement attack.  相似文献   

11.
The sign and magnitude of the surface charge of liposomes containingelectrostatically neutral lecithin and cholesterol was alteredby incremental additions of dicetyl phosphate or stearylamine.Such liposomes instantaneously bound authentic proteins at 0°Conly when they had electrostatically opposite charges; 1 M NaClinhibited the binding. The amount of protein bound was dependentupon the concentration of protein and the charge of liposomes.Phytochrome in a crude extract of etiolated pea (Pisum sativumcv. Alaska) shoots could bind equally well to liposomes witheither positive or negative charges irrespective of PR and PFRboth of which showed no spectral distortion. Both PR and PFRof purified pea phytochrome bound entirely to positively chargedliposomes but partially to negatively charged ones. In thisassociation both PR and PFR became pelletable at similar rates.Absorption spectra of liposome-bound PR showed a small blueshift and then a crucial spectral distortion after red-lightirradiation. (Received October 22, 1980; Accepted January 22, 1981)  相似文献   

12.
Hg2+ and Cd2+ interact differently with biomimetic erythrocyte membranes   总被引:1,自引:0,他引:1  
In order to characterize the potentially deleterious effects of toxic Hg2+ and Cd2+ on lipid membranes, we have studied their binding to liposomes whose composition mimicked erythrocyte membranes. Fluorescence spectroscopy utilizing the concentration dependent quenching of Phen Green™ SK by Hg2+ and Cd2+ was found to be a sensitive tool to probe these interactions at metal concentrations ≤1 μM. We have systematically developed a metal binding affinity assay to screen for the interactions of Hg2+ or Cd2+ with certain lipid classes. A biomimetic liposome system was developed that contained four major lipid classes of erythrocyte membranes (zwitterionic lipids: phosphatidylcholine and phosphatidylethanolamine; negatively charged: phosphatidylserine and neutral: cholesterol). In contrast to Hg2+, which preferentially bound to the negatively charged phosphatidylserine compared to the zwitterionic components, Cd2+ bound stronger to the two zwitterionic lipids. Thus, the observed distinct differences in the binding affinity of Hg2+ and Cd2+ for certain lipid classes together with their known effects on membrane properties represent an important first step toward a better understanding the role of these interactions in the chronic toxicity of these metals.  相似文献   

13.
The effect of electrostatically binding ferrous cytochrome c to anionic liposomes, composed of dimyristoyl phosphatidylglycerol (DMPG-), dioleoyl phosphatidyl-glycerol (DOPG-), or cardiolipin (CL2-) mixed with varying amounts of egg phosphatidylcholine (PC), on the kinetics of cytochrome oxidation by the positively charged cobalt phenanthroline ion has been measured using stopped-flow spectrophotometry. The rate of electron transfer is enhanced as much as 3000-fold by increasing the number of negatively charged binding sites on the liposome surface, and by as much as 1000-fold by decreasing the ionic strength of the buffer. The sigmoidal shape of the curve of rate constant vs mole percent anionic lipid is consistent with a positively cooperative effect of the negative surface charge. The rate stimulation is greater for DOPG(-)- and CL2(-)-containing liposomes than for DMPG- vesicles; this is most likely due to structural differences in the respective liposomes. The results do not provide any support for a role of structural changes in the bound cytochrome in influencing oxidation kinetics, a possibility suggested by recent spectroscopic measurements, although relatively small conformational effects cannot be completely ruled out.  相似文献   

14.
Summary Interaction of positively (phosphatidylcholine/stearylamine 51) or negatively (phosphatidylcholine/stearic acid 51) charged liposomes with Ehrlich ascites tumor cells for 1–5 min increases or decreases, respectively, the bidirectional fluxes of the folic acid analog, methotrexate. These effects on influx and efflux appear to be symmetrical since the liposomes do not change the intracellular level of methotrexate at the steady state. Influx kinetics show that these alterations result from an increase or decrease in theV max with no change in theK m in . These effects appear to be specific for the methotrexate-tetrahydrofolate carrier system since the transport of other compounds which utilize this carrier, aminopterin, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate, is affected similarly to methotrexate, whereas, the transport of folic acid, a compound similar in structure and charge but not significantly transported by this carrier is unaffected by liposomes. Once cells are exposed to charged liposomes, the effects on methotrexate transport cannot be reversed by washing the cells free of the extracellular liposomes. If, however, cells are exposed to liposomes of one charge, washed and then exposed to liposomes of the opposite charge, methotrexate influx is reversed to control rates. The effects of charged liposomes on methotrexate influx were not abolished by treating the cells with neuraminidase, metabolic inhibitors or lowering the temperature to 4°C. Studies on the uptake of [14C] liposomes show that these effects are not proportional to the total amount of lipid associated with the cell but result from an initial rapid liposome-cell association that is not dependent on temperature or energy metabolism nor related to cell surface charge.  相似文献   

15.
Liposomes containing ethylenediaminetetraacetic acid (EDTA) were prepared with different surface properties by varying the liposomal lipid constituents. Positively charged liposomes were prepared with a mixture of phosphatidylcholine, cholesterol, and stearylamine. Negatively charged liposomes were prepared with a mixture of phosphatidylcholine, cholesterol, and phosphatidylserine. Neutral liposomes were prepared with phosphatidylcholine alone, dipalmitoyl phosphatidylcholine alone, or with a mixture of phosphatidylcholine and cholesterol. Distributions of 14C-labeled EDTA were determined in mouse tissues from 5 min to 24 h after a single intravenous injection of liposome preparation. Differences in tissue distribution were produced by the different liposomal lipid compositions. Uptake of EDTA by spleen and marrow was highest from negatively charged liposomes. Uptake of EDTA by lungs was highest from positively charged liposomes; lungs and brain retained relatively high levels of EDTA from these liposomes between 1 and 6 h after injection. Liver uptake of EDTA from positively or negatively charged liposomes was similar; the highest EDTA uptake by liver was from the neutral liposomes composed of a mixture of phosphatidylcholine and cholesterol. Liposomes composed of dipalmitoyl phosphatidylcholine produced the lowest liposomal EDTA uptake observed in liver and marrow but modrate uptake by lungs. Tissue uptake and retention of EDTA from all of the liposome preparations were greater than those of non-encapsulated EDTA. The results presented demonstrate that the tissue distribution of a molecule can be modified by encapsulation of that substance into liposomes of different surface properties. Selective delivery of liposome-encapsulated drugs to specific tissues could be effectively used in chemotherapy and membrane biochemistry.  相似文献   

16.
Abstract

Non-bilayer phospholipid arrangements are three-dimensional structures that can form when anionic phospholipids with an intermediate form of the tubular hexagonal phase II (HII), such as phosphatidic acid, phosphatidylserine or cardiolipin, are present in a bilayer of lipids. The drugs chlorpromazine and procainamide, which trigger a lupus-like disease in humans, can induce the formation of non-bilayer phospholipid arrangements, and we have previously shown that liposomes with non-bilayer arrangements induced by these drugs cause an autoimmune disease resembling human lupus in mice. Here we show that liposomes with non-bilayer phospholipid arrangements induced by Mn2+ cause a similar disease in mice. We extensively characterize the physical properties and immunological reactivity of liposomes made of the zwitterionic lipid phosphatidylcholine and a HII-preferring lipid, in the absence or presence of Mn2+, chlorpromazine or procainamide. We use an hapten inhibition assay to define the epitope recognized by sera of mice with the disease, and by a monoclonal antibody that binds specifically to non-bilayer phospholipid arrangements, and we report that phosphorylcholine and glycerolphosphorylcholine, which form part of the polar region of phosphatidylcholine, are the only haptens that block the binding of the tested antibodies to non-bilayer arrangements. We propose a model in which the negatively charged HII-preferring lipids form an inverted micelle by electrostatic interactions with the positive charge of Mn2+, chlorpromazine or procainamide; the inverted micelle is inserted into the bilayer of phosphatidylcholine, whose polar regions are exposed and become targets for antibody production. This model may be relevant in the pathogenesis of human lupus.  相似文献   

17.
ACTH-lipid interactions were investigated by: (1) lipid-monolayer studies using several zwitterionic and anionic phospholipids and gangliosides, (2) permeability experiments by following the swelling rate of liposomes in isotonic glycerol solutions by light scattering, using liposomes of synthetic lipids and liposomes made of lipids extracted from light synaptic plasma membranes, and (3) by steady-state fluorescence anisotropy measurements on liposomes derived from light synaptic plasma membranes employing 1,6-diphenyl-1,3,5-hexatriene as fluorescent probe. (1) The monolayer experiments demonstrated an interaction with gangliosides GT1, GM1, dioleoylphosphatidic acid and phosphatidylserine, but little or no interaction with phosphatidylcholine or sphingomyelin. The interaction with monolayers of GT1 or phosphatidic acid decreased for ACTH1-13-NH2 and ACTH1-10. (2) The liposome experiments showed that 2·10?5 M ACTH1–24 increased the glycerol permeability by 20% and decreased the activation energy only when liposomes derived from light synaptic plasma membranes were used. Treatment of the liposomes with neuraminidase abolished the ACTH-induced permeability increase. (3) Steady-state fluorescence depolarization measurements revealed that ACTH1–24, ACTH1-16-NH2 and ACTH1–10 did not change the fluidity of liposomes derived from light synaptic plasma membranes as sensed by diphenylhexatriene. It is concluded that ACTH1–24 can bind to negatively charged lipids and can form an amphipathic helix aligned parallel to the membrane surface involving the N-terminal residues 1 to 12, possibly to 16. Polysialogangliosides will favorably meet the condition of a high local surface charge density under physiological circumstances. It is suggested that ACTH-ganglioside interactions will participate in ACTH-receptor interactions.  相似文献   

18.
CaCl2 or MgCl2 but not NaCl enhances the soyabean lectin-induced agglutination of liposomes prepared from total lipids of erythrocyte membranes. The addition of purified phosphatidylserine to the total lipids of erythrocyte membranes before the formation of liposomes inhibits lectin-induced agglutinability of the preparation in the absence of CaCl2, but not in its presence. When preformed phosphatidylserine liposomes are added to liposomes of total lipids of erythrocyte ghosts, they do not inhibit agglutination, indicating that phosphatidylserine does not inhibit the lectin directly. CaCl2 or MgCl2 but not NaCl also stimulates the soyabean lectin-induced agglutination of human erythrocyte membranes.Electron micrographs indicate that the liposome preparations are multilamellar and separate even in the presence of CaCl2. When such liposomes are treated with lectin with or without CaCl2, the electron micrographs show significant agglutination without apparent fusion. The reversal of the agglutination of liposomes by specific sugars followed by turbidimetric and electron microscopic techniques supports the conclusion that CaCl2 stimulated lectin-induced agglutination is unaccompanied by fusion.The stimulation by divalent cations of lectin-induced agglutination of erythrocyte ghosts or of our liposomes may be due to a decrease in apparent surface charge of these membrane systems.  相似文献   

19.
We have studied the effects of membrane surface charge on Na+ ion permeation and Ca2+ block in single, batrachotoxin-activated Na channels from rat brain, incorporated into planar lipid bilayers. In phospholipid membranes with no net charge (phosphatidylethanolamine, PE), at low divalent cation concentrations (approximately 100 microM Mg2+), the single channel current-voltage relation was linear and the single channel conductance saturated with increasing [Na+] and ionic strength, reaching a maximum (gamma max) of 31.8 pS, with an apparent dissociation constant (K0.5) of 40.5 mM. The data could be approximated by a rectangular hyperbola. In negatively charged bilayers (70% phosphatidylserine, PS; 30% PE) slightly larger conductances were observed at each concentration, but the hyperbolic form of the conductance-concentration relation was retained (gamma max = 32.9 pS and K0.5 = 31.5 mM) without any preferential increase in conductance at lower ionic strengths. Symmetrical application of Ca2+ caused a voltage-dependent block of the single channel current, with the block being greater at negative potentials. For any given voltage and [Na+] this block was identical in neutral and negatively charged membranes. These observations suggest that both the conduction pathway and the site(s) of Ca2+ block of the rat brain Na channel protein are electrostatically isolated from the negatively charged headgroups on the membrane lipids.  相似文献   

20.
The phosphatidylcholine exchange protein from bovine liver catalyzes the transfer of phosphatidylcholine between rat liver mitochondria and sonicated liposomes. The effect of changes in the liposomal lipid composition and ionic composition of the medium on the transfer have been determined. In addition, it has been determined how these changes affected the electrophoretic mobility i.e. the surface charge of the membrane particles involved. Transfer was inhibited by the incorporation of negatively charged phosphatidic acid, phosphatidylserine, phosphatidylglycerol and phosphatidylinositol into the phosphatidylcholine-containing vesicles; zwitterionic phosphatidyl-ethanolamine had much less of an inhibitory effect while positively charged stearylamine stimulated. The cation Mg2+ and, to a lesser extent, K+ overcame the inhibitory effect exerted by phosphatidic acid, in that concentration range where these ions neutralized the negative surface charge most effectively. Under conditions where Mg2+ and K+ affected the membrane surface charge relatively little inhibition was observed. In measuring the protein-mediated transfer between a monolayer and vesicles consisting of only phosphatidylcholine, cations inhibited the transfer in the order La3+ greater than Mg2+ larger than or equal to Ca2+ greater than K+ = Na+. Inhibition was not related to the ionic strength, and very likely reflects an interference of these cations with an electrostatic interaction between the exchange protein and the polar head group of phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号