共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparison of the rate of ethylene production by apple fruit to the methionine content of the tissue suggests that the sulfur of methionine has to be recycled during its continuous synthesis of ethylene. The metabolism of the sulfur of methionine in apple tissue in relation to ethylene biosynthesis was investigated. The results showed that in the conversion of methionine to ethylene the CH3S-group of methionine is first incorporated as a unit into S-methylcysteine. By demethylation, S-methylcysteine is metabolized to cysteine. Cysteine then donates its sulfur to form methionine, presumably through cystathionine and homocysteine. This view is consistent with the observation that cysteine, homoserine and homocysteine were all converted to methionine, in an order of efficiency from least to greatest. For the conversion to ethylene, methionine was the most efficient precursor, followed by homocysteine and homoserine. Based on these results, a methionine-sulfur cycle in relation to ethylene biosynthesis is presented. 相似文献
2.
3.
4.
Methionine synthesis in Proteus mirabilis 总被引:6,自引:0,他引:6
5.
Methionine metabolism in apple tissue: implication of s-adenosylmethionine as an intermediate in the conversion of methionine to ethylene 下载免费PDF全文
If S-adenosylmethionine (SAM) is the direct precursor of ethylene as previously proposed, it is expected that 5′-S-methyl-5′-thioadenosine (MTA) would be the fragment nucleoside. When [Me-14C] or [35S]methionine was fed to climacteric apple (Malus sylvestris Mill) tissue, radioactive 5-S-methyl-5-thioribose (MTR) was identified as the predominant product and MTA as a minor one. When the conversion of methionine into ethylene was inhibited by l-2-amino-4-(2′-aminoethoxy)-trans-3-butenoic acid, the conversion of [35S] or [Me14C]methionine into MTR was similarly inhibited. Furthermore, the formation of MTA and MTR from [35S]methionine was observed only in climacteric tissue which produced ethylene and actively converted methionine to ethylene but not in preclimacteric tissue which did not produce ethylene or convert methionine to ethylene. These observations suggest that the conversion of methionine into MTA and MTR is closely related to ethylene biosynthesis and provide indirect evidence that SAM may be an intermediate in the conversion of methionine to ethylene. 相似文献
6.
Saito Y Ashida H Kojima C Tamura H Matsumura H Kai Y Yokota A 《Bioscience, biotechnology, and biochemistry》2007,71(8):2021-2028
The product of the mtnA gene of Bacillus subtilis catalyzes the isomerization of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P). The catalysis of MtnA is a novel isomerization of an aldose phosphate harboring a phosphate group on the hemiacetal group. This enzyme is distributed widely among bacteria through higher eukaryotes. The isomerase reaction analyzed using the recombinant B. subtilis enzyme showed a Michaelis constant for MTR-1-P of 138 microM, and showed that the maximum velocity of the reaction was 20.4 micromol min(-1) (mg protein)(-1). The optimum reaction temperature and reaction pH were 35 degrees C and 8.1. The activation energy of the reaction was calculated to be 68.7 kJ mol(-1). The enzyme, with a molecular mass of 76 kDa, was composed of two subunits. The equilibrium constant in the reversible isomerase reaction [MTRu-1-P]/[MTR-1-P] was 6. We discuss the possible reaction mechanism. 相似文献
7.
8.
1. Following the genetic studies by Smith (1961) and Smith & Childs (1963) with methionine auxotrophs of Salmonella typhimurium, methionine formation from homocysteine has been investigated with cell-free extracts of this organism. 2. As found with Escherichia coli (Woods, Foster & Guest, 1964), methyl groups are formed by an N(5)N(10)-methylenetetrahydrofolate reductase. They are then transferred to homocysteine by either a simple N(5)-methyltetrahydropteroyl-triglutamate-homocysteine methyltransferase or alternatively a cobalamin-dependent N(5)-methyltetrahydrofolate-homocysteine methyltransferase. 3. S. typhimurium differs from E. coli in being able to synthesize significant amounts of cobalamin. 相似文献
9.
Detection and characterization of sorbitol dehydrogenase from apple callus tissue 总被引:1,自引:0,他引:1 下载免费PDF全文
Sorbitol dehydrogenase (l-iditol:NAD(+) oxidoreductase, EC 1.1.1.14) has been detected and characterized from apple (Malus domestica cv. Granny Smith) mesocarp tissue cultures. The enzyme oxidized sorbitol, xylitol, l-arabitol, ribitol, and l-threitol in the presence of NAD. NADP could not replace NAD. Mannitol was slightly oxidized (8% of sorbitol). Other polyols that did not serve as substrate were galactitol, myo-inositol, d-arabitol, erythritol, and glycerol. The dehydrogenase oxidized NADH in the presence of d-fructose or l-sorbose. No detectable activity was observed with d-tagatose. NADPH could partially substitute for NADH.Maximum rate of NAD reduction in the presence of sorbitol occurred in tris(hydroxymethyl)aminomethane-HCl buffer (pH 9), or in 2-amino-2-methyl-1,3-propanediol buffer (pH 9.5). Maximum rates of NADH oxidation in the presence of fructose were observed between pH 5.7 and 7.0 with phosphate buffer. Reaction rates increased with increasing temperature up to 60 C. The K(m) for sorbitol and xylitol oxidation were 86 millimolar and 37 millimolar, respectively. The K(m) for fructose reduction was 1.5 molar.Sorbitol oxidation was completely inhibited by heavy metal ions, iodoacetate, p-chloromercuribenzoate, and cysteine. ZnSO(4) (0.25 millimolar) reversed the cysteine inhibition. It is suggested that apple sorbitol dehydrogenase contains sulfhydryl groups and requires a metal ion for full activity. 相似文献
10.
Hartmut R. Schroeder C.J. Barnes R.C. Bohinski R.O. Mumma M.F. Mallette 《Biochimica et Biophysica Acta (BBA)/General Subjects》1972
5-Methylthioribose was isolated after incubation of Escherichia coli B in a glucose-salts medium. At least 60% of the radioactivity in absolute ethanol extracts of the residue from lyophilized medium supplemented with 35SO42− was located in two chromatographic areas that were identified as 5-methylthioribose and its sulfoxide. The sulfoxide was formed by oxidation of 5-methylthioribose during necessary processing of cultures and fractions. These compounds were characterized by functional group analysis and chromatographic comparison with authentic material. 5-Methylthioribose sulfoxide was isolated from 12 l of incubation medium of E. coli. After purification in three paper and one thin-layer chromatographic systems, 50 μg was obtained. The trimethylsilyl derivative of this compound was compared with that of authentic 5-methylthioribose sulfoxide. Gas chromatography and mass spectrometry confirmed the identity. This is the first report of 5-methylthioribose from a bacterium. 相似文献
11.
12.
Conversion of l-homocysteine into ethionine and of methionine into S-methylcysteine in apple tissues is demonstrated. 相似文献
13.
In biological systems, both proteolysis and aminolysis of amide bonds produce activated intermediates through acyl transfer reactions either inter- or intramolecularly. Protein splicing is an illustrative example that proceeds through a series of catalyzed acyl transfer reactions and culminates at an O- or S-acyl intermediate. This intermediate leads to an uncatalyzed acyl migration to form an amide bond in the spliced product. A ligation method mimicking the uncatalyzed final steps in protein splicing has been developed utilizing the acyl transfer amide-bond feature for the blockwise coupling of unprotected, free peptide segments at methionine (Met). The latent thiol moiety of Met can be exploited using homocysteine at the α-amino terminal position of a free peptide for transthioesterification with another free peptide containing an α-thioester to give an S-acyl intermediate. A subsequent, proximity-driven S- to N-acyl migration of this acyl intermediate spontaneously rearranges to form a homocysteinyl amide bond. S-methylation with excess p-nitrobenezensulfonate yields Met at the ligation site. The methionine ligation is selective and orthogonal, and is usually completed within 4 h when performed at slightly basic pH and under strongly reductive conditions. No side reactions due to acylation were observed with any other α-amines of both peptide segments as seen in the synthesis of parathyroid hormone peptides. Furthermore, cyclic peptide can also be obtained through the same strategy by placing both homocysteine at the amino terminus and the thioester at the carboxyl terminus in an unprotected peptide precursor. These biomimetic ligation strategies hold promise for engineering novel peptides and proteins. © 1998 John Wiley & Sons, Inc. Biopoly 46: 319–327, 1998 相似文献
14.
15.
Ice formation and tissue response in apple twigs 总被引:7,自引:0,他引:7
Abstract. The response of apple twig tissue to a freezing stress was examined using a combination of low temperature scanning electron microscopy and freeze substitution techniques. Bark and wood tissues responded differently. In the bark, large extracellular ice crystals were observed in the cortex. The adjacent cortical cells collapsed and a large reduction in cell volume was observed. The extent of cell collapse throughout the bark was not uniform. Cells in the periderm, phloem and cambium exhibited little change in cell volume compared to cortical cells. Large extracellular ice crystals were not observed in the xylem or pith tissues. The xylem ray parenchyma and pith cells did not collapse in response to a freezing stress, but retained their original shape. The pattern of ice formation and cell response was not observed to change with season or the level of cold acclimation. This study supported the concept that bark and xylem tissues exhibit contrasting freezing behaviour. The observations were consistent with the idea that water in bark freezes extracellularly while water in xylem ray parenchyma and pith cells may supercool to temperatures approaching –40 °C prior to freezing intracellularly. 相似文献
16.
In immature rib segments prepared from morning-glory (Ipomoea tricolor) flower buds, the major soluble metabolite formed from tracer amounts of l-methionine-U-(14)C was S-methylmethionine (SMM). In segments of senescing ribs, (14)C was progressively lost from SMM and appeared in free methionine. Immature segments contained about 4 nmoles of free methionine and about 16 nmoles of SMM per 30 segments. As the segments senesced, the methionine content increased about 10-fold while the SMM content remained unchanged; during this time about 0.8 nmole of ethylene was produced per 30 segments. Tracer experiments with l-methionine-U-(14)C, l-methionine-methyl-(3)H, and l-homocysteine thiolactone-(35)S indicated that SMM was capable of acting as a methyl donor, and that in senescent segments the methyl group was utilized for methionine production with homocysteine serving as methyl acceptor. Of the 2 molecules of methionine produced in this reaction, 1 was re-methylated to SMM, and the other contributed to the observed rise in the content of free methionine.Internal pools of methionine and SMM were prelabeled (but not significantly expanded) by overnight incubation on 10 mum l-methionine-U-(14)C. The specific radioactivity of the ethylene subsequently evolved during the senescence of the segments closely paralleled the specific radioactivity of carbon atoms 3 plus 4 of free methionine extracted from the tissue, demonstrating that methionine was the major precursor of ethylene in this system. The specific radioactivity of carbon atoms 3 plus 4 of extracted SMM was about twice that of the free methionine.Based on these results, a scheme for methionine biosynthesis in senescent rib tissue is presented. The operation of this pathway in the control of ethylene production is discussed. 相似文献
17.
《Plant Science Letters》1984,33(1):1-6
Effects of silver nitrate (AgNO3) and silver thiosulphate (STS) on ethylene production from apple cortex cylinders and on viability of isolated apple protoplasts have been studied. The response to both silver salts in these two systems is similar: AgNO3 inhibits ethylene production and is toxic to protoplasts; STS is ineffective on ethylene production and does not harm protoplasts. 相似文献
18.
19.
Intermediates in the recycling of 5-methylthioribose to methionine in fruits 总被引:1,自引:1,他引:1 下载免费PDF全文
The recycling of 5-methylthioribose (MTR) to methionine in avocado (Persea americana Mill, cv Hass) and tomato (Lycopersicum esculentum Mill, cv unknown) was examined. [14CH3]MTR was not metabolized in cell free extract from avocado fruit. Either [14CH3]MTR plus ATP or [14CH3]5-methylthioribose-1-phosphate (MTR-1-P) alone, however, were metabolized to two new products by these extracts. MTR kinase activity has previously been detected in these fruit extracts. These data indicate that MTR must be converted to MTR-1-P by MTR kinase before further metabolism can occur. The products of MTR-1-P metabolism were tentatively identified as α-keto-γ-methylthiobutyric acid (α-KMB) and α-hydroxy-γ-methylthiobutyric acid (α-HMB) by chromatography in several solvent systems. [35S]α-KMB was found to be further metabolized to methionine and α-HMB by these extracts, whereas α-HMB was not. However, α-HMB inhibited the conversion of α-KMB to methionine. Both [U-14C]α-KMB and [U-14C]methionine, but not [U-14C]α-HMB, were converted to ethylene in tomato pericarp tissue. In addition, aminoethoxyvinylglycine inhibited the conversion of α-KMB to ethylene. These data suggest that the recycling pathway leading to ethylene is MTR → MTR-1-P → α-KMB → methionine → S-adenosylmethionine → 1-aminocyclopropane-1-carboxylic acid → ethylene. 相似文献
20.
Cloning and characterization of four apple MADS box genes isolated from vegetative tissue 总被引:6,自引:0,他引:6
With the aim of finding genes involved in the floral transition of woody species four MADS box genes containing cDNAs from apple (Malus domestica) have been isolated. Three genes were isolated from vegetative tissue of apple, but were homologues of known genes that specify floral organ identity. MdMADS13 is an AP3-like B class MADS box gene, and was mainly expressed in petals and stamens as demonstrated by Northern blot analysis. MdMADS14 and -15 are AGAMOUS-like genes. They differed slightly in expression patterns on Northern blots, with MdMADS15 mRNA levels equally high in stamens and carpels, but MdMADS14 preferably expressed in carpels. MdMADS14 is likely to be the apple orthologue of one of the Arabidopsis thaliana SHATTERPROOF genes, and MdMADS15 closely resembled the Arabidopsis AGAMOUS gene. It has been shown with RT-PCR that the three floral apple MADS box genes are expressed in vegetative tissues of adult as well as juvenile trees, albeit at low levels. MdMADS12 is an AP1-like gene that is expressed at similar levels in leaves, vegetative shoots, and floral tissues, and that may be involved in the transition from the juvenile to the adult stage. 相似文献