首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The genetic variance among random-mated lines derived from backcrossing (BCgS1 lines) depends upon the backcross generation (g) and the number (n) of BCgF1 plants crossed in generations 1 through g. There is little effect of n on genetic variance for n > 6. The genetic variance among BCgF2-derived lines is greater than that among BCgS1 lines for all g. If either BCgF2-derived or BCgS1 lines are used as a base population for recurrent selection, 8, 16, 32, and 64 BC1F1, BC2F1, BC3F1, and BC4F1 plants, respectively, should be used to avoid loss of donor alleles to drift.Joint contribution of USDA-ARS and Journal Paper No. J-11224 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2471Formerly Research Geneticist, USDA-ARS, Ames, Iowa, USA  相似文献   

2.
The impact of synonymous nucleotide substitutions on fitness in mammals remains controversial. Despite some indications of selective constraint, synonymous sites are often assumed to be neutral, and the rate of their evolution is used as a proxy for mutation rate. We subdivide all sites into four classes in terms of the mutable CpG context, nonCpG, postC, preG, and postCpreG, and compare four-fold synonymous sites and intron sites residing outside transposable elements. The distribution of the rate of evolution across all synonymous sites is trimodal. Rate of evolution at nonCpG synonymous sites, not preceded by C and not followed by G, is approximately 10% below that at such intron sites. In contrast, rate of evolution at postCpreG synonymous sites is approximately 30% above that at such intron sites. Finally, synonymous and intron postC and preG sites evolve at similar rates. The relationship between the levels of polymorphism at the corresponding synonymous and intron sites is very similar to that between their rates of evolution. Within every class, synonymous sites are occupied by G or C much more often than intron sites, whose nucleotide composition is consistent with neutral mutation-drift equilibrium. These patterns suggest that synonymous sites are under weak selection in favor of G and C, with the average coefficient s approximately 0.25/Ne approximately 10(-5), where Ne is the effective population size. Such selection decelerates evolution and reduces variability at sites with symmetric mutation, but has the opposite effects at sites where the favored nucleotides are more mutable. The amino-acid composition of proteins dictates that many synonymous sites are CpGprone, which causes them, on average, to evolve faster and to be more polymorphic than intron sites. An average genotype carries approximately 10(7) suboptimal nucleotides at synonymous sites, implying synergistic epistasis in selection against them.  相似文献   

3.
The effect of genetic drift in spatially distributed dispersal-linked and density-regulated populations is studied in a classical one-locus two-allele system. We analyse emergence of genetic differentiation assuming random drift only, where the noise-like variability is due to demographic stochasticity. We find emergence of clusters of sub-units with local allele fixation and persistence of both alleles in lengthy simulations. We demonstrate that local allele fixation (extending over a number of adjoining spatial sub-units) – without global loss of alleles – may occur when the carrying capacities of local patches are small, under a full range population dynamic regimes, when dispersal rate is small, and when redistribution (through dispersal) does not act as global mixer. These results are novel. The key to the observations is that drift is simultaneously influenced by distance-dependent dispersal, demographic stochasticity and autocorrelated population fluctuations due to delayed-density dependence. These are standard elements of contemporary population models in spatially structured context. With stable large populations, no stochasticity and dispersal limited to neighbours only, our model collapses to the stepping-stone model, while with dispersal being random and global, the model collapses to Wright's island model.  相似文献   

4.
A formula is derived for the probability that two genes taken at random from the same locus in two populations isolated at time t ago are of the same allelic type. The model assumed is a neutral one where there are possibly different mutation rates between different alleles. Inequalities are derived for this probability. A particular result is that for a fixed overall mutation rate, the probability is least for the infinite alleles model. Inequalities and approximations are found for Nei's genetic identity at one locus when mutation rates vary, and also for the identity across loci when the overall mutation rates per locus vary. Genetic identity at the molecular level is considered and a probability generating function found for the number of segregating sites between two randomly chosen gametes from two divergent populations, under various models.  相似文献   

5.
假设一个群体是由“单位点—双基因”的个体所组成的,在该群体内存在选择、突变、迁移、生死等效应的作用。本文给出了在上述假设下并满足:(1)世代重叠,选择、突变、迁移、生死等效应的作用均在世代遗传之间完成;(2)群体适当大,个体间交配随机,符合孟德尔式遗传;(3)没有任何意外的灾祸等约定的群体遗传的数学模型。通过模型分析,我们能够进一步用数学语言来解释一些生命现象。模型分析指出:虽然某些群体不满足Hardy-Weinberg定律所叙述的条件,但可能具有和Hardy-Weinberg定律的结论相似的结果。该文中还就几个主要参数的变化讨论了群体遗传和进化的某些性质,如平衡等。最后,我们给出了该模型的一个数值例子。  相似文献   

6.
In a simple computer model of population evolution, we have shown that frequency of recombination between haplotypes during the gamete production influences the effectiveness of the reproduction strategy. High recombination rates keeps the fraction of defective alleles low while low recombination rate or uneven distributed recombination spots change the strategy of genomes' evolution and result in the accumulation of heterozygous loci in the genomes. Even short fragment of chromosome with restricted recombination influences the genetic structure of neighboring regions.  相似文献   

7.
Population subdivision and migration are generally considered to be important causes of linkage disequilibrium (LD). We explore the combined effects of recombination and gene flow on the amount of LD, the maintenance of polymorphism, and the degree of local adaptation in a subdivided population by analyzing a diploid, deterministic continent–island model with genic selection on two linked loci (i.e., no dominance or epistasis). For this simple model, we characterize explicitly all possible equilibrium configurations. Simple and intuitive approximations for many quantities of interest are obtained in limiting cases, such as weak migration, weak selection, weak or strong recombination. For instance, we derive explicit expressions for the measures and r2 (the squared correlation in allelic state) of LD. They depend in qualitatively different ways on the migration rate. Remarkably high values of r2 are maintained between weakly linked loci, especially if gene flow is low. We determine how the maximum amount of gene flow that admits preservation of the locally adapted haplotype, hence of polymorphism at both loci, depends on recombination rate and selection coefficients. We also investigate the evolution of differentiation by examining the invasion of beneficial mutants of small effect that are linked to an already present, locally adapted allele. Mutants of much smaller effect can invade successfully than predicted by naive single-locus theory provided they are at least weakly linked. Finally, the influence of linkage on the degree of local adaptation, the migration load, and the effective migration rate at a neutral locus is explored. We discuss possible consequences for the evolution of genetic architecture, in particular, for the emergence of clusters of tightly linked, slightly beneficial mutations and the evolution of recombination and chromosome inversions.  相似文献   

8.
We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations’ duration—as is typical in DE—there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a “model-based approach” from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.  相似文献   

9.
Several groups have recently modeled evolutionary transitions from an ancestral allele to a beneficial allele separated by one or more intervening mutants. The beneficial allele can become fixed if a succession of intermediate mutants are fixed or alternatively if successive mutants arise while the previous intermediate mutant is still segregating. This latter process has been termed stochastic tunneling. Previous work has focused on the Moran model of population genetics. I use elementary methods of analyzing stochastic processes to derive the probability of tunneling in the limit of large population size for both Moran and Wright-Fisher populations. I also show how to efficiently obtain numerical results for finite populations. These results show that the probability of stochastic tunneling is twice as large under the Wright-Fisher model as it is under the Moran model.  相似文献   

10.
The genetic diversity and population structure of about 350 Rhizobium leguminosarum biovar viciae isolates from Vicia cracca were analysed. A hierarchical sampling design was used covering three regions, one region in Belgium and two in France, in which multiple local V. cracca populations were sampled. Rhizobium isolates were genotyped using RAPD and by sequencing two chromosomal housekeeping genes (glnII and recA) and one plasmid-borne gene (nodC). Twenty-six nodC types and sixty-seven chromosomal types were identified, many of which appeared to be regional or local endemics. We found strong genetic differentiation both among V. cracca populations that are separated by only a few kilometres, and among regions that are 50 to 350 km apart. Despite significant plasmid exchange, chromosomal and nod types were similarly structured among host populations and regions. We found two lineages of which one prevailed in the Belgian region while the other dominated the French regions. Although a significant correlation between genetic differentiation and geographic distance was found, it is deemed more likely that the observed biogeographic patterns are rather due to coevolutionary interactions and environmental pressures. Furthermore, the impact of recombination on the chromosomal differentiation was found to be considerable.  相似文献   

11.
《Mammalian Biology》2014,79(2):138-148
After centuries of range contraction and demographic declines wolves are now expanding in Europe, colonizing regions from where they have been absent for centuries. Wolf colonizing the western Alps originate by the expansion of the Italian population. Vagrant wolves of Italian and Dinaric-Balkan origins have been recently observed in the Eastern Alps. In this study we compared the genetic structure of wolf populations in Italy and Croatia, aiming to identify the sources of the ongoing recolonization of the Eastern Alps. DNA samples, extracted from 282 Italian and 152 Croatian wolves, were genotyped at 12 autosomal microsatellites (STR), four Y-linked STR and at the hypervariable part of the mitochondrial DNA control-region (mtDNA CR1). Wolves in Croatia and Italy underwent recent demographic bottlenecks, but they differ in genetic diversity and population structure. Wolves in Croatia were more variable at STR loci (NA = 7.4, HO = 0.66, HE = 0.72; n = 152) than wolves in Italy (NA = 5.3, HO = 0.57, HE = 0.58; n = 282). We found four mitochondrial DNA (mtDNA CR1) and 11 Y-STR haplotypes in Croatian wolves, but only one mtDNA CR1 and three Y-STR haplotypes in Italy. Wolves in Croatia were subdivided into three genetically distinct subpopulations (in Dalmatia, Gorski kotar and Lika regions), while Italian wolves were not sub-structured. Assignment testing shows that the eastern and central Alps are recolonized by wolves dispersing from both the Italian and Dinaric populations. The recolonization of the Alps will predictably continue in the future and the new population will be genetically admixed and very variable with greater opportunities for local adaptations and survival.  相似文献   

12.
Compensatory mutations are individually deleterious but harmless in appropriate combinations either at more than two sites within a gene or on separate genes. Considering that dominance effects of selection and heterodimer formation of gene products may affect the rate of compensatory evolution, we investigate compensatory neutral mutation models for diploid populations. Our theoretical analysis on the average time until fixation of compensatory mutations shows that these factors play an important role in reducing the fixation time of compensatory mutations if mutation rates are not low. Compensatory evolution of heterodimers is shown to occur more easily if the deleterious effects of single mutants are recessive.  相似文献   

13.
Hideki Innan 《Genetica》2009,137(1):19-37
Various population genetic models of duplicated genes are introduced. The problems covered in this review include the fixation process of a duplicated copy, copy number polymorphism, the fates of duplicated genes and single nucleotide polymorphism in duplicated genes. Because of increasing evidence for concerted evolution by gene conversion, this review introduces recently developed gene conversion models. In the first half, models assuming independent evolution of duplicated genes are introduced, and then the effect of gene conversion is considered in the second half.  相似文献   

14.
We give an exact solution to the Kolmogorov equation describing genetic drift for an arbitrary number of alleles at a given locus. This is achieved by finding a change of variable which makes the equation separable, and therefore reduces the problem with an arbitrary number of alleles to the solution of a set of equations that are essentially no more complicated than that found in the two-allele case. The same change of variable also renders the Kolmogorov equation with the effect of mutations added separable, as long as the mutation matrix has equal entries in each row. Thus, this case can also be solved exactly for an arbitrary number of alleles. The general solution, which is in the form of a probability distribution, is in agreement with the previously known results. Results are also given for a wide range of other quantities of interest, such as the probabilities of extinction of various numbers of alleles, mean times to these extinctions, and the means and variances of the allele frequencies. To aid dissemination, these results are presented in two stages: first of all they are given without derivations and too much mathematical detail, and then subsequently derivations and a more technical discussion are provided.  相似文献   

15.
There have been significant evolutionary pressures on the chicken during both its speciation and its subsequent domestication by man. Infectious diseases are expected to have exerted strong selective pressures during these processes. Consequently, it is likely that genes associated with disease susceptibility or resistance have been subject to some form of selection. Two genes involved in the immune response (interferon-γ and interleukin 1-β) were selected for sequencing in diverse chicken populations from Pakistan, Sri Lanka, Bangladesh, Kenya, Senegal, Burkina Faso and Botswana, as well as six outgroup samples (grey, green, red and Ceylon jungle fowl and grey francolin and bamboo partridge). Haplotype frequencies, tests of neutrality, summary statistics, coalescent simulations and phylogenetic analysis by maximum likelihood were used to determine the population genetic characteristics of the genes. Networks indicate that these chicken genes are most closely related to the red jungle fowl. Interferon-γ had lower diversity and considerable coding sequence conservation, which is consistent with its function as a key inflammatory cytokine of the immune response. In contrast, the pleiotropic cytokine interleukin 1-β had higher diversity and showed signals of balancing selection moderated by recombination, yielding high numbers of diverse alleles, possibly reflecting broader functionality and potential roles in more diseases in different environments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

16.
We examined genetic diversity within- and among-populations of speckled dace (Rhinichthys osculus) in five major drainage systems in the state of Oregon in western North America. Analysis of sequence variation in a 670-bp segment of the mitochondrial cytochrome b gene revealed deep divergence among basins and high genetic diversity within basins. Application of a molecular clock indicated that the divergence time among basins reflects vicariant events during the late Miocene to early Pliocene. The high levels of genetic diversity observed within basins is likely due to large historic population sizes, in particular, within the Klamath Basin. Two highly divergent mtDNA lineages were found to co-occur in populations in the Klamath Basin. This result may be indicative of a complex history of isolation and reconnection in this basin and/or multiple colonization events. Based on the observed level of mtDNA divergence these lineages may represent two reproductively isolated sympatric taxa. We recommend that major basins be regarded as distinct ESUs based on high levels of subdivision, deep divergences, and reciprocal monophyly among basins.  相似文献   

17.
Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/]. [BMB Reports 2013; 46(8): 416-421]  相似文献   

18.
Scutellaria baicalensis is a popular medicinal plant that is on the verge of extinction due to uncontrolled harvesting, habitat destruction and deterioration of its ecosystem. We isolated and characterised 21 microsatellite loci in this species. Ninety-four individuals from six populations were used to test the polymorphism of the microsatellite loci. The number of alleles per locus ranged from 1 to 13, with a mean of 7.2. Observed and expected heterozygosities varied from 0.000 to 1.000 and 0.000 to 0.938, respectively. Among these new microsatellite markers, only two loci showed significant deviation from Hardy–Weinberg equilibrium. No locus pairs showed significant linkage disequilibrium. The 21 primer pairs were tested in other Scutellaria species. Most of these primer pairs worked successfully, except for Scut18. These new microsatellite markers could be applied to investigate the genetic diversity and population genetic structure of S. baicalensis and its closely related species.  相似文献   

19.
A number of statistical methods are widely used to describe allelic variation at specific genetic loci and its implication on the evolutionary history of these loci. Although the methods were developed primarily to study allelic variation at loci that are virtually always present in the genome, they are often applied to data of gene content variation (i.e., presence/absence of multiple homologous genes) at the killer cell immunoglobulin-like receptor (KIR) gene cluster. In this paper, we discuss methodological issues involved in the analysis of gene content variation data in the KIR region and also its covariation with polymorphism at the human leukocyte antigen class I loci, which encode ligands for KIR. A comparison of several statistical methods and measures (gene frequency, haplotype frequency, and linkage disequilibrium estimation) using the Centre d’Etude du Polymorphisme Humain data will be provided using KIR haplotypes that have been determined by segregation analysis, noting the strengths and weaknesses of the methods when only the presence/absence data is considered. Finally, application of these methods to a set of globally distributed populations is described (see Single et al., Nat Genet 39:1114–1119, 2007) in order to illustrate the challenges faced when inferring the joint effects of natural selection and demographic history on these immune-related genes.  相似文献   

20.
Habitat fragmentation can prevent gene flow between plant populations and lead to a loss of genetic diversity. However, such impact of fragmentation has not always been consistently confirmed by previous studies and the issue still needs further research. Particularly little is known about the impact of fragmentation on steppe plants. Steppe once covered vast, continuous areas, and nowadays is among the most fragmented biomes. In Ukraine, remnants of this habitat survived in large but few nature reserves and loess ravines as well as on kurgans (burial mounds of ancient nomadic people), which, despite their small size, are still numerous and scattered throughout the landscape.We studied the impact of fragmentation on the genetic diversity and structure of Iris pumila, a typical species of European steppes. Our main focus was to compare the genetic characteristics between kurgan populations (n = 8), and populations from larger refugia (n = 6). We assessed the genetic diversity of the studied populations with Universal Rice Primers.Our analyses revealed high genetic diversity across all investigated populations (mean He: 0.233; mean PPB: 58.57). However in kurgan populations genetic diversity was significantly higher than in larger refugia. Genetic diversity (He) was negatively correlated with population size. Most of the molecular variance (82%) was represented within populations, whereas genetic differentiation among populations was moderate (ΦST = 0.160), and low among refugia types (ΦRT = 0.026).The maintenance of high genetic diversity despite two centuries of fragmentation may be related to the moderate disturbance occurring on kurgans, which enhances the sexual reproduction of the species. Moreover, we assume that species traits such as longevity and polyploidy might counterbalance genetic drift, while its self-incompatibility and presence of a soil seed bank allows for the replenishment of the gene pool. Overall, our results suggest that kurgans can protect genetic diversity of steppe species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号